Innovated scalable dynamic learning for time-varying graphical models

被引:0
|
作者
Zheng, Zemin [1 ]
Li, Liwan [1 ]
Zhou, Jia [1 ]
Kong, Yinfei [2 ]
机构
[1] Univ Sci & Technol China, Sch Management, Hefei, Anhui, Peoples R China
[2] Calif State Univ Fullerton, Dept Informat Syst & Decis Sci, Fullerton, CA 92634 USA
基金
中国国家自然科学基金;
关键词
Time-varying graphical models; Precision matrix estimation; Scalability; Kernel smoothing; PRECISION MATRIX ESTIMATION; SPARSE; SELECTION; LASSO;
D O I
10.1016/j.spl.2020.108843
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we propose a new approach of innovated scalable dynamic learning (ISDL) for estimating time-varying graphical structures. Motivated by the innovated transformation, we convert the original problem into large covariance matrix estimation and exploit the scaled Lasso with kernel smoothing to simplify the tuning procedure. In addition, we show that our method has theoretical guarantees under mild regularity conditions for accurate estimation of each precision matrix. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] VARIATIONAL BAYES LEARNING OF TIME-VARYING GRAPHICAL MODELS
    Yu, Hang
    Dauwels, Justin
    [J]. 2016 IEEE 26TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2016,
  • [2] Estimating Time-Varying Graphical Models
    Yang, Jilei
    Peng, Jie
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2020, 29 (01) : 191 - 202
  • [3] Dynamic undirected graphical models for time-varying clinical symptom and neuroimaging networks
    McDonnell, Erin I.
    Xie, Shanghong
    Marder, Karen
    Cui, Fanyu
    Wang, Yuanjia
    [J]. STATISTICS IN MEDICINE, 2024, 43 (21) : 4131 - 4147
  • [4] Structural inference of time-varying mixed graphical models
    Liu, Qingyang
    Zhang, Yuping
    Ouyang, Zhengqing
    [J]. STAT, 2021, 10 (01):
  • [5] Temporal Pattern Detection in Time-Varying Graphical Models
    Tomasi, Federico
    Tozzo, Veronica
    Barla, Annalisa
    [J]. 2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 4481 - 4488
  • [6] Innovated scalable efficient inference for ultra-large graphical models
    Zhou, Jia
    Zheng, Zemin
    Zhou, Huiting
    Dong, Ruipeng
    [J]. STATISTICS & PROBABILITY LETTERS, 2021, 173
  • [7] Scalable Learning of Graphical Models
    Petitjean, Francois
    Webb, Geoffrey I.
    [J]. KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, : 2131 - 2132
  • [8] INNOVATED SCALABLE EFFICIENT ESTIMATION IN ULTRA-LARGE GAUSSIAN GRAPHICAL MODELS
    Fan, Yingying
    Lv, Jinchi
    [J]. ANNALS OF STATISTICS, 2016, 44 (05): : 2098 - 2126
  • [9] Time-varying extreme pattern with dynamic models
    do Nascimento, Fernando Ferraz
    Gamerman, Dani
    Lopes, Hedibert Freitas
    [J]. TEST, 2016, 25 (01) : 131 - 149
  • [10] Time-varying sparsity in dynamic regression models
    Kalli, Maria
    Griffin, Jim E.
    [J]. JOURNAL OF ECONOMETRICS, 2014, 178 (02) : 779 - 793