Innovated scalable dynamic learning for time-varying graphical models

被引:0
|
作者
Zheng, Zemin [1 ]
Li, Liwan [1 ]
Zhou, Jia [1 ]
Kong, Yinfei [2 ]
机构
[1] Univ Sci & Technol China, Sch Management, Hefei, Anhui, Peoples R China
[2] Calif State Univ Fullerton, Dept Informat Syst & Decis Sci, Fullerton, CA 92634 USA
基金
中国国家自然科学基金;
关键词
Time-varying graphical models; Precision matrix estimation; Scalability; Kernel smoothing; PRECISION MATRIX ESTIMATION; SPARSE; SELECTION; LASSO;
D O I
10.1016/j.spl.2020.108843
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we propose a new approach of innovated scalable dynamic learning (ISDL) for estimating time-varying graphical structures. Motivated by the innovated transformation, we convert the original problem into large covariance matrix estimation and exploit the scaled Lasso with kernel smoothing to simplify the tuning procedure. In addition, we show that our method has theoretical guarantees under mild regularity conditions for accurate estimation of each precision matrix. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Network Inference via the Time-Varying Graphical Lasso
    Hallac, David
    Park, Youngsuk
    Boyd, Stephen
    Leskovec, Jure
    [J]. KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2017, : 205 - 213
  • [22] Learning time-varying categories
    Daniel J. Navarro
    Andrew Perfors
    Wai Keen Vong
    [J]. Memory & Cognition, 2013, 41 : 917 - 927
  • [23] Learning time-varying categories
    Navarro, Daniel J.
    Perfors, Amy
    Vong, Wai Keen
    [J]. MEMORY & COGNITION, 2013, 41 (06) : 917 - 927
  • [24] Representation of time-varying nonlinear systems with time-varying principal dynamic modes
    Zhong, Yuru
    Jan, Kung-Ming
    Ju, Ki H.
    Chon, Ki H.
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2007, 54 (11) : 1983 - 1992
  • [25] Time-varying general dynamic factor models and the measurement of financial connectedness
    Barigozzi, Matteo
    Hallin, Marc
    Soccorsi, Stefano
    von Sachs, Rainer
    [J]. JOURNAL OF ECONOMETRICS, 2021, 222 (01) : 324 - 343
  • [26] Dynamic shrinkage in time-varying parameter stochastic volatility in mean models
    Huber, Florian
    Pfarrhofer, Michael
    [J]. JOURNAL OF APPLIED ECONOMETRICS, 2021, 36 (02) : 262 - 270
  • [27] Cox models with dynamic ridge penalties on time-varying effects of the covariates
    Perperoglou, Aris
    [J]. STATISTICS IN MEDICINE, 2014, 33 (01) : 170 - 180
  • [28] Second-order approximation of dynamic models with time-varying risk
    Benigno, Gianluca
    Benigno, Pierpaolo
    Nistico, Salvatore
    [J]. JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2013, 37 (07): : 1231 - 1247
  • [29] Incorporating Time-Varying Catchability into Population Dynamic Stock Assessment Models
    Wilberg, Michael J.
    Thorson, James T.
    Linton, Brian C.
    Berkson, Jim
    [J]. REVIEWS IN FISHERIES SCIENCE, 2010, 18 (01): : 7 - 24
  • [30] Capturing Dynamic Connectivity From Resting State fMRI Using Time-Varying Graphical Lasso
    Cai, Biao
    Zhang, Gemeng
    Zhang, Aiying
    Stephen, Julia M.
    Wilson, Tony W.
    Calhoun, Vince D.
    Wang, Yu-Ping
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2019, 66 (07) : 1852 - 1862