Innovated scalable efficient inference for ultra-large graphical models

被引:0
|
作者
Zhou, Jia [1 ]
Zheng, Zemin [1 ]
Zhou, Huiting [1 ]
Dong, Ruipeng [1 ]
机构
[1] Univ Sci & Technol China, Sch Management, Int Inst Finance, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
Gaussian graphical models; Scalability; Confidence intervals; CONFIDENCE-INTERVALS; MATRIX ESTIMATION; LASSO; REGRESSION;
D O I
10.1016/j.spl.2021.109085
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Statistical inference for ultra-large graphical models is important in network data analysis. We exploit the innovated scalable efficient estimation (Fan and Lv, 2016) as an initial estimate to develop a scalable inference procedure for graphical models. The effectiveness of the proposed method is theoretically and numerically demonstrated. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] INNOVATED SCALABLE EFFICIENT ESTIMATION IN ULTRA-LARGE GAUSSIAN GRAPHICAL MODELS
    Fan, Yingying
    Lv, Jinchi
    [J]. ANNALS OF STATISTICS, 2016, 44 (05): : 2098 - 2126
  • [2] Efficient Localized Inference for Large Graphical Models
    Chen, Jinglin
    Peng, Jian
    Liu, Qiang
    [J]. PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 4987 - 4993
  • [3] Innovated scalable dynamic learning for time-varying graphical models
    Zheng, Zemin
    Li, Liwan
    Zhou, Jia
    Kong, Yinfei
    [J]. STATISTICS & PROBABILITY LETTERS, 2020, 165
  • [4] Scalable Exact MAP Inference in Graphical Models
    Marinescu, Radu
    Kishimoto, Akihiro
    Botea, Adi
    [J]. ECAI 2016: 22ND EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, 285 : 1684 - 1685
  • [5] A scalable switch architecture for ultra-large IP and lambda switch routers
    Hirano, M
    Aoki, M
    Matsuura, N
    Kurimoto, T
    Miyamura, T
    Goshima, M
    Urushidani, S
    [J]. ICT'2003: 10TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS, VOLS I AND II, CONFERENCE PROCEEDINGS, 2003, : 1656 - 1661
  • [6] Fast Bayesian inference in large Gaussian graphical models
    Leday, Gwenael G. R.
    Richardson, Sylvia
    [J]. BIOMETRICS, 2019, 75 (04) : 1288 - 1298
  • [7] Ultra-Large Alignments Using Ensembles of Hidden Markov Models
    Nguyen, Nam-phuong
    Mirarab, Siavash
    Kumar, Keerthana
    Warnow, Tandy
    [J]. RESEARCH IN COMPUTATIONAL MOLECULAR BIOLOGY (RECOMB 2015), 2015, 9029 : 259 - 260
  • [8] ULTRA-LARGE SCALE INTEGRATION
    MEINDL, JD
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 1984, 31 (11) : 1555 - 1561
  • [9] Stacked Graphical Models for Efficient Inference in Markov Random Fields
    Kou, Zhenzhen
    Cohen, William W.
    [J]. PROCEEDINGS OF THE SEVENTH SIAM INTERNATIONAL CONFERENCE ON DATA MINING, 2007, : 533 - 538
  • [10] Learning of graphical models and efficient inference for object class recognition
    Bergtholdt, Martin
    Kappes, Joerg H.
    Schnoerr, Christoph
    [J]. PATTERN RECOGNITION, PROCEEDINGS, 2006, 4174 : 273 - 283