Decomposing Euclidean space with a small number of smooth sets

被引:9
|
作者
Steprans, J [1 ]
机构
[1] York Univ, Dept Math, N York, ON M3J 1P3, Canada
关键词
Cardinal invariant; Sacks real; tangent plane; covering number;
D O I
10.1090/S0002-9947-99-02197-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let the cardinal invariant sn denote the least number of continuously smooth n-dimensional surfaces into which (n + 1)-dimensional Euclidean space can be decomposed. It will be shown to be consistent that sn is greater than s(n+1). These cardinals will be shown to be closely related to the invariants associated with the problem of decomposing continuous functions into differentiable ones.
引用
收藏
页码:1461 / 1480
页数:20
相关论文
共 50 条
  • [31] Optimization of the Hausdorff distance between sets in Euclidean space
    Ushakov, V. N.
    Lakhtin, A. S.
    Lebedev, P. D.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2014, 20 (03): : 291 - 308
  • [32] The Density of Sets Avoiding Distance 1 in Euclidean Space
    Christine Bachoc
    Alberto Passuello
    Alain Thiery
    Discrete & Computational Geometry, 2015, 53 : 783 - 808
  • [33] Optimization of the Hausdorff distance between sets in Euclidean space
    Ushakov, V. N.
    Lakhtin, A. S.
    Lebedev, P. D.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2015, 291 : S222 - S238
  • [34] CONVEX GENERATION OF CONVEX BOREL SETS IN EUCLIDEAN SPACE
    ROGERS, CA
    PACIFIC JOURNAL OF MATHEMATICS, 1970, 35 (03) : 773 - &
  • [36] RECTIFYING CURVES ON A SMOOTH SURFACE IMMERSED IN THE EUCLIDEAN SPACE
    Shaikh, Absos Ali
    Ghosh, Pinaki Ranjan
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2019, 50 (04): : 883 - 890
  • [37] Rectifying curves on a smooth surface immersed in the Euclidean space
    Absos Ali Shaikh
    Pinaki Ranjan Ghosh
    Indian Journal of Pure and Applied Mathematics, 2019, 50 : 883 - 890
  • [38] molBLOCKS: decomposing small molecule sets and uncovering enriched fragments
    Ghersi, Dario
    Singh, Mona
    BIOINFORMATICS, 2014, 30 (14) : 2081 - 2083
  • [39] On the chromatic number of Euclidean space with two forbidden distances
    Berdnikov, A. V.
    Raigorodskii, A. M.
    MATHEMATICAL NOTES, 2014, 96 (5-6) : 827 - 830
  • [40] On the chromatic number of Euclidean space with two forbidden distances
    A. V. Berdnikov
    A. M. Raigorodskii
    Mathematical Notes, 2014, 96 : 827 - 830