Decomposing Euclidean space with a small number of smooth sets

被引:9
|
作者
Steprans, J [1 ]
机构
[1] York Univ, Dept Math, N York, ON M3J 1P3, Canada
关键词
Cardinal invariant; Sacks real; tangent plane; covering number;
D O I
10.1090/S0002-9947-99-02197-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let the cardinal invariant sn denote the least number of continuously smooth n-dimensional surfaces into which (n + 1)-dimensional Euclidean space can be decomposed. It will be shown to be consistent that sn is greater than s(n+1). These cardinals will be shown to be closely related to the invariants associated with the problem of decomposing continuous functions into differentiable ones.
引用
收藏
页码:1461 / 1480
页数:20
相关论文
共 50 条
  • [21] A Linear Separability Criterion for Sets of Euclidean Space
    Gabidullina, Z. R.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 158 (01) : 145 - 171
  • [22] On the chromatic number of Euclidean space and the Borsuk problem
    Raigorodskii, A. M.
    Shitova, I. M.
    MATHEMATICAL NOTES, 2008, 83 (3-4) : 579 - 582
  • [23] On the chromatic number of Euclidean space and the Borsuk problem
    A. M. Raigorodskii
    I. M. Shitova
    Mathematical Notes, 2008, 83 : 579 - 582
  • [24] Concerning zero-dimensional sets in euclidean space
    Wilder, R. L.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1929, 31 (1-4) : 345 - 359
  • [25] FAT AND THIN SETS FOR DOUBLING MEASURES IN EUCLIDEAN SPACE
    Wang, Wen
    Wen, Shengyou
    Wen, Zhi-Ying
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2013, 38 (02) : 535 - 546
  • [26] Optimization of the Hausdorff distance between sets in Euclidean space
    V. N. Ushakov
    A. S. Lakhtin
    P. D. Lebedev
    Proceedings of the Steklov Institute of Mathematics, 2015, 291 : 222 - 238
  • [27] Theorems on the separability of alpha-sets in Euclidean space
    Ushakov, V. N.
    Uspenskii, A. A.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2016, 22 (02): : 277 - 291
  • [28] The Density of Sets Avoiding Distance 1 in Euclidean Space
    Bachoc, Christine
    Passuello, Alberto
    Thiery, Alain
    DISCRETE & COMPUTATIONAL GEOMETRY, 2015, 53 (04) : 783 - 808
  • [29] NOTE ON REALIZATION OF DISTANCES WITHIN SETS IN EUCLIDEAN SPACE
    LARMAN, DG
    COMMENTARII MATHEMATICI HELVETICI, 1978, 53 (04) : 529 - 535
  • [30] A remark on two notions of flatness for sets in the Euclidean space
    Violo, Ivan Yuri
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2022, 2022 (791): : 157 - 171