Finite fractal dimension of random attractor for stochastic non-autonomous strongly damped wave equation

被引:11
|
作者
Wang, Zhaojuan [1 ]
Zhang, Lingping [1 ]
机构
[1] Huaiyin Normal Univ, Sch Math Sci, Huaian 223300, Peoples R China
基金
中国国家自然科学基金;
关键词
Stochastic strongly damped wave equation; Random attractor; Fractal dimension; RANDOM DYNAMICAL-SYSTEMS; ASYMPTOTIC-BEHAVIOR; GLOBAL ATTRACTOR; WHITE-NOISE;
D O I
10.1016/j.camwa.2018.02.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first prove the existence of a random attractor for stochastic non autonomous strongly damped wave equations with additive white noise. Then we apply a criteria to obtain an upper bound of fractal dimension of the random attractor of considered system. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3343 / 3357
页数:15
相关论文
共 50 条
  • [21] Fractal Dimension of Random Attractors for Non-autonomous Fractional Stochastic Ginzburg—Landau Equations
    Chun Xiao Guo
    Ji Shu
    Xiao Hu Wang
    Acta Mathematica Sinica, English Series, 2020, 36 : 318 - 336
  • [22] Random attractor of non-autonomous stochastic Boussinesq lattice system
    Zhao, Min
    Zhou, Shengfan
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (09)
  • [23] Fractal Dimension of Random Attractors for Non-autonomous Fractional Stochastic Ginzburg–Landau Equations
    Chun Xiao GUO
    Ji SHU
    Xiao Hu WANG
    Acta Mathematica Sinica,English Series, 2020, 36 (03) : 318 - 336
  • [24] Fractal Dimension of Random Attractors for Non-autonomous Fractional Stochastic Ginzburg–Landau Equations
    Chun Xiao GUO
    Ji SHU
    Xiao Hu WANG
    Acta Mathematica Sinica, 2020, 36 (03) : 318 - 336
  • [25] Fractal dimension of random attractors for stochastic non-autonomous reaction-diffusion equations
    Zhou, Shengfan
    Tian, Yongxiao
    Wang, Zhaojuan
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 276 : 80 - 95
  • [26] Kernel sections for non-autonomous strongly damped wave equations
    Zhou, SF
    Fan, XM
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 275 (02) : 850 - 869
  • [27] The inflated attractors of non-autonomous strongly damped wave equations
    Fan X.-M.
    Zhou S.-F.
    Acta Mathematicae Applicatae Sinica, 2004, 20 (4) : 547 - 556
  • [28] Existence and upper semicontinuity of random attractors for non-autonomous stochastic strongly damped sine-Gordon equation on unbounded domains
    Wang, Zhaojuan
    Liu, Yanan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (07) : 1445 - 1460
  • [29] RANDOM EXPONENTIAL ATTRACTOR FOR STOCHASTIC NON-AUTONOMOUS SUSPENSION BRIDGE EQUATION WITH ADDITIVE WHITE NOISE
    Xu, Ling
    Huang, Jianhua
    Ma, Qiaozhen
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (11): : 6323 - 6351
  • [30] Fractal Dimension of Random Attractors for Non-autonomous Fractional Stochastic Reaction-diffusion Equations
    Shu Ji
    Bai Qianqian
    Huang Xin
    Zhang Jian
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2020, 33 (04): : 377 - 394