Kernel sections for non-autonomous strongly damped wave equations

被引:21
|
作者
Zhou, SF [1 ]
Fan, XM
机构
[1] Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China
[2] Univ Elect Sci & Technol China, Dept Appl Math, Chengdu 610054, Peoples R China
基金
中国国家自然科学基金;
关键词
wave equation; Kernel section; Hausdorff dimension; equivalent norm;
D O I
10.1016/S0022-247X(02)00437-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of compact kernel sections for the process generated by a non-autonomous strongly damped wave equation with homogeneous Dirichlet boundary condition. We show that the upper bound of the Hausdorff dimension of sections decreases as the damping grows for large strong damping. (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:850 / 869
页数:20
相关论文
共 50 条
  • [1] Kernel sections for damped non-autonomous wave equations with critical exponent
    Zhou, SF
    Wang, LS
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2003, 9 (02) : 399 - 412
  • [2] Kernel sections for non-autonomous strongly damped wave equations of non-degenerate Kirchhoff-type
    Fan, XM
    Zhou, SF
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2004, 158 (01) : 253 - 266
  • [3] Kernel sections for damped non-autonomous wave equations with linear memory and critical exponent
    Zhou, SF
    [J]. QUARTERLY OF APPLIED MATHEMATICS, 2003, 61 (04) : 731 - 757
  • [4] The inflated attractors of non-autonomous strongly damped wave equations
    Fan X.-M.
    Zhou S.-F.
    [J]. Acta Mathematicae Applicatae Sinica, 2004, 20 (4) : 547 - 556
  • [5] On non-autonomous strongly damped wave equations with a uniform attractor and some averaging
    Li Hongyan
    Zhou Shengfan
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 341 (02) : 791 - 802
  • [6] Lower Semicontinuity of Pullback Attractors for a Non-autonomous Coupled System of Strongly Damped Wave Equations
    Bonotto, Everaldo M.
    Carvalho, Alexandre N.
    Nascimento, Marcelo J. D.
    Santiago, Eric B.
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2024, 90 (01):
  • [7] Kolmogorov ε-entropy of attractor for a non-autonomous strongly damped wave equation
    Li, Hongyan
    Zhou, Shengfan
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (09) : 3579 - 3586
  • [8] A non-autonomous strongly damped wave equation: Existence and continuity of the pullback attractor
    Caraballo, Tomas
    Carvalho, Alexandre N.
    Langa, Jose A.
    Rivero, Felipe
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (06) : 2272 - 2283
  • [9] Uniform random attractors for a non-autonomous stochastic strongly damped wave equation on RN
    Li, Yanjiao
    Li, Bowen
    Li, Xiaojun
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (03):
  • [10] Random attractors for damped non-autonomous wave equations with memory and white noise
    Zhou, Shengfan
    Zhao, Min
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 120 : 202 - 226