Trees and asymptotic expansions for fractional stochastic differential equations

被引:18
|
作者
Neuenkirch, A. [1 ]
Nourdin, I. [2 ]
Roessler, A. [3 ]
Tindel, S. [4 ]
机构
[1] Univ Frankfurt, FB Inst Math 12, D-60325 Frankfurt, Germany
[2] Univ Paris 06, Lab Probabil & Modeles Aleatoires, F-75252 Paris 5, France
[3] Tech Univ Darmstadt, Fachbereich Math, D-64289 Darmstadt, Germany
[4] Inst Elie Cartan Nancy IECN, F-54506 Vandoeuvre Les Nancy, France
关键词
Fractional Brownian motion; Stochastic differential equations; Trees expansions; BROWNIAN-MOTION; DRIVEN; INTEGRATION; CALCULUS; RESPECT;
D O I
10.1214/07-AIHP159
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we consider an n-dimensional stochastic differential equation driven by a fractional Brownian motion with Hurst parameter H > 1/3. We derive an expansion for E[f (X(t))] in terms of t, where X denotes the solution to the SDE and f : R(n) -> R is a regular function. Comparing to F Baudoin and L. Coutin, Stochastic Process, Appl. 117 (2007) 550-574, where the same problem is studied, we provide an improvement in three different directions: we are able to consider equations with drift, we parametrize our expansion with trees, which makes it easier to use, and we obtain a sharp estimate of the remainder for the case H > 1/2.
引用
收藏
页码:157 / 174
页数:18
相关论文
共 50 条