Fractional Differential Equations and Expansions in Fractional Powers

被引:2
|
作者
Caratelli, Diego [1 ,2 ]
Natalini, Pierpaolo [3 ]
Ricci, Paolo Emilio [4 ]
机构
[1] Antenna Co, High Tech Campus 29, NL-5656 AE Eindhoven, Netherlands
[2] Eindhoven Univ Technol, Dept Elect Engn, POB 513, NL-5600 MB Eindhoven, Netherlands
[3] Roma Tre Univ, Dept Math & Phys, Largo San Leonardo Murialdo 1, I-00146 Rome, Italy
[4] Int Telemat Univ UniNettuno, Math Sect, Corso Vittorio Emanuele II 39, I-00186 Rome, Italy
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 10期
关键词
Caputo fractional derivative; fractional differential equations; expansions in fractional powers; fractional-order logistic equation; NUMERICAL-SOLUTION;
D O I
10.3390/sym15101842
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We use power series with rational exponents to find exact solutions to initial value problems for fractional differential equations. Certain problems that have been previously studied in the literature can be solved in a closed form, and approximate solutions are derived by constructing recursions for the relevant expansion coefficients.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Trees and asymptotic expansions for fractional stochastic differential equations
    Neuenkirch, A.
    Nourdin, I.
    Roessler, A.
    Tindel, S.
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2009, 45 (01): : 157 - 174
  • [2] Examples of Expansions in Fractional Powers, and Applications
    Caratelli, Diego
    Natalini, Pierpaolo
    Ricci, Paolo Emilio
    Li, Dongfang
    Choi, Junesang
    SYMMETRY-BASEL, 2023, 15 (09):
  • [3] Chebyshev polynomials for higher order differential equations and fractional powers
    Bezerra, Flank D. M.
    Santos, Lucas A.
    MATHEMATISCHE ANNALEN, 2024, 388 (01) : 675 - 702
  • [4] Chebyshev polynomials for higher order differential equations and fractional powers
    Flank D. M. Bezerra
    Lucas A. Santos
    Mathematische Annalen, 2024, 388 : 675 - 702
  • [5] Quasilinear Fractional Order Equations and Fractional Powers of Sectorial Operators
    Fedorov, Vladimir E.
    Kostic, Marko
    Zakharova, Tatyana A.
    FRACTAL AND FRACTIONAL, 2023, 7 (05)
  • [6] Solving initial and boundary value problems of fractional ordinary differential equations by using collocation and fractional powers
    Simoes Patricio, M. F.
    Ramos, Higinio
    Patricio, Miguel
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 354 : 348 - 359
  • [7] A fractional differential quadrature method for fractional differential equations and fractional eigenvalue problems
    Mohamed, Salwa A.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020,
  • [8] Fractional Differential Equations
    Liu, Fawang
    Meerschaert, Mark M.
    Momani, Shaher
    Leonenko, Nikolai N.
    Chen, Wen
    Agrawal, Om P.
    INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 2010
  • [9] Fractional Differential Equations on Algebroids and Fractional Algebroids
    Chis, Oana
    Despi, Ioan
    Opris, Dumitru
    NEW TRENDS IN NANOTECHNOLOGY AND FRACTIONAL CALCULUS APPLICATIONS, 2010, : 193 - +
  • [10] FRACTIONAL COMPLEX TRANSFORM FOR FRACTIONAL DIFFERENTIAL EQUATIONS
    Li, Zheng-Biao
    He, Ji-Huan
    MATHEMATICAL AND COMPUTATIONAL APPLICATIONS, 2010, 15 (05) : 970 - 973