Trees and asymptotic expansions for fractional stochastic differential equations

被引:18
|
作者
Neuenkirch, A. [1 ]
Nourdin, I. [2 ]
Roessler, A. [3 ]
Tindel, S. [4 ]
机构
[1] Univ Frankfurt, FB Inst Math 12, D-60325 Frankfurt, Germany
[2] Univ Paris 06, Lab Probabil & Modeles Aleatoires, F-75252 Paris 5, France
[3] Tech Univ Darmstadt, Fachbereich Math, D-64289 Darmstadt, Germany
[4] Inst Elie Cartan Nancy IECN, F-54506 Vandoeuvre Les Nancy, France
关键词
Fractional Brownian motion; Stochastic differential equations; Trees expansions; BROWNIAN-MOTION; DRIVEN; INTEGRATION; CALCULUS; RESPECT;
D O I
10.1214/07-AIHP159
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we consider an n-dimensional stochastic differential equation driven by a fractional Brownian motion with Hurst parameter H > 1/3. We derive an expansion for E[f (X(t))] in terms of t, where X denotes the solution to the SDE and f : R(n) -> R is a regular function. Comparing to F Baudoin and L. Coutin, Stochastic Process, Appl. 117 (2007) 550-574, where the same problem is studied, we provide an improvement in three different directions: we are able to consider equations with drift, we parametrize our expansion with trees, which makes it easier to use, and we obtain a sharp estimate of the remainder for the case H > 1/2.
引用
收藏
页码:157 / 174
页数:18
相关论文
共 50 条
  • [41] A Fractional Bihari Inequality and Some Applications to Fractional Differential Equations and Stochastic Equations
    Ouaddah, A.
    Henderson, J.
    Nieto, J. J.
    Ouahab, A.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (06)
  • [42] Mixed fractional stochastic differential equations with jumps
    Shevchenko, Georgiy
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2014, 86 (02) : 203 - 217
  • [43] A Fractional Bihari Inequality and Some Applications to Fractional Differential Equations and Stochastic Equations
    A. Ouaddah
    J. Henderson
    J. J. Nieto
    A. Ouahab
    Mediterranean Journal of Mathematics, 2021, 18
  • [44] Numerical solution of stochastic fractional differential equations
    Minoo Kamrani
    Numerical Algorithms, 2015, 68 : 81 - 93
  • [45] Stochastic differential equations for fractional Brownian motions
    Coutin, L
    Qian, ZM
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (01): : 75 - 80
  • [46] A spectral method for stochastic fractional differential equations
    Cardone, Angelamaria
    D'Ambrosio, Raffaele
    Paternoster, Beatrice
    APPLIED NUMERICAL MATHEMATICS, 2019, 139 : 115 - 119
  • [47] Fractional time stochastic partial differential equations
    Chen, Zhen-Qing
    Kim, Kyeong-Hun
    Kim, Panki
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (04) : 1470 - 1499
  • [48] On some fractional stochastic delay differential equations
    El-Borai, Mahmoud M.
    El-Nadi, Khairia El-Said
    Fouad, Hoda A.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (03) : 1165 - 1170
  • [49] Fractional stochastic differential equations: A semimartingale approach
    Nguyen Tien Dung
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2011, 56 (01): : 141 - 155
  • [50] ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH HADAMARD FRACTIONAL DERIVATIVES
    Kassim, Mohammed D.
    Tatar, Nasser-eddine
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2021, 24 (02) : 483 - 508