Model-based co-clustering for ordinal data

被引:31
|
作者
Jacques, Julien [1 ,3 ]
Biernacki, Christophe [2 ,3 ]
机构
[1] Univ Lyon, ERIC EA 3083, Lyon, France
[2] Univ Lille, Lab Paul Painleve, UMR CNRS 8524, Lille, France
[3] Inria Lille Nord Europe, MODAL Team, Lille, France
关键词
Latent block model; EM algorithm; Gibbs sampler; MIXTURE MODEL;
D O I
10.1016/j.csda.2018.01.014
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A model-based co-clustering algorithm for ordinal data is presented. This algorithm relies on the latent block model embedding a probability distribution specific to ordinal data (the so-called BOS or Binary Ordinal Search distribution). Model inference relies on a Stochastic EM algorithm coupled with a Gibbs sampler, and the ICL-BIC criterion is used for selecting the number of co-clusters (or blocks). The main advantage of this ordinal dedicated co-clustering model is its parsimony, the interpretability of the co-cluster parameters (mode, precision) and the possibility to take into account missing data. Numerical experiments on simulated data show the efficiency of the inference strategy, and real data analyses illustrate the interest of the proposed procedure. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:101 / 115
页数:15
相关论文
共 50 条
  • [31] Gaussian Topographic Co-clustering Model
    Priam, Rodolphe
    Nadif, Mohamed
    Govaert, Gerard
    ADVANCES IN INTELLIGENT DATA ANALYSIS XII, 2013, 8207 : 345 - 356
  • [32] The latent topic block model for the co-clustering of textual interaction data
    Berge, Laurent R.
    Bouveyron, Charles
    Corneli, Marco
    Latouche, Pierre
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2019, 137 : 247 - 270
  • [33] Model-based clustering of longitudinal data
    McNicholas, Paul D.
    Murphy, T. Brendan
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2010, 38 (01): : 153 - 168
  • [34] Boosting for model-based data clustering
    Saffari, Amir
    Bischof, Horst
    PATTERN RECOGNITION, 2008, 5096 : 51 - 60
  • [35] Model-based clustering for longitudinal data
    De la Cruz-Mesia, Rolando
    Quintanab, Fernando A.
    Marshall, Guillermo
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (03) : 1441 - 1457
  • [36] Model-Based Clustering of Temporal Data
    El Assaad, Hani
    Same, Allou
    Govaert, Gerard
    Aknin, Patrice
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2013, 2013, 8131 : 9 - 16
  • [37] Co-clustering for Binary Data with Maximum Modularity
    Labiod, Lazhar
    Nadif, Mohamed
    NEURAL INFORMATION PROCESSING, PT II, 2011, 7063 : 700 - 708
  • [38] High-Order Co-clustering Text Data on Semantics-Based Representation Model
    Jing, Liping
    Yun, Jiali
    Yu, Jian
    Huang, Joshua
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PT I: 15TH PACIFIC-ASIA CONFERENCE, PAKDD 2011, 2011, 6634 : 171 - 182
  • [39] CO-CLUSTERING OF SPATIALLY RESOLVED TRANSCRIPTOMIC DATA
    Sottosanti, Andrea
    Risso, Davide
    ANNALS OF APPLIED STATISTICS, 2023, 17 (02): : 1444 - 1468
  • [40] CO-CLUSTERING SEPARATELY EXCHANGEABLE NETWORK DATA
    Choi, David
    Wolfe, Patrick J.
    ANNALS OF STATISTICS, 2014, 42 (01): : 29 - 63