HiTIMED: hierarchical tumor immune microenvironment epigenetic deconvolution for accurate cell type resolution in the tumor microenvironment using tumor-type-specific DNA methylation data

被引:16
|
作者
Zhang, Ze [1 ]
Wiencke, John K. [2 ,3 ]
Kelsey, Karl T. [4 ,5 ]
Koestler, Devin C. [6 ]
Christensen, Brock C. [1 ,7 ,8 ]
Salas, Lucas A. [1 ]
机构
[1] Dartmouth Coll, Hitchcock Med Ctr, Dept Epidemiol, 1 Med Ctr Dr, Lebanon, NH 03756 USA
[2] Univ Calif San Francisco, Dept Neurol Surg, San Francisco, CA 94143 USA
[3] Univ Calif San Francisco, Inst Human Genet, San Francisco, CA 94143 USA
[4] Brown Univ, Dept Epidemiol & Pathol, Providence, RI 02912 USA
[5] Brown Univ, Dept Lab Med, Providence, RI 02912 USA
[6] Univ Kansas, Med Ctr, Dept Biostat & Data Sci, Kansas City, KS 66103 USA
[7] Dartmouth Coll, Dept Mol & Syst Biol, Geisel Sch Med, 1 Med Ctr Dr, Lebanon, NH 03756 USA
[8] Dartmouth Coll, Geisel Sch Med, Dept Community & Family Med, 1 Med Ctr Dr, Lebanon, NH 03756 USA
关键词
DNA methylation; Deconvolution; Tumor microenvironment; Epigenetics; Cancer; Immune microenvironment; Tumor angiogenesis; EPIGENOME-WIDE ASSOCIATION; TURNING COLD; CANCER; ANGIOGENESIS;
D O I
10.1186/s12967-022-03736-6
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Background Cellular compositions of solid tumor microenvironments are heterogeneous, varying across patients and tumor types. High-resolution profiling of the tumor microenvironment cell composition is crucial to understanding its biological and clinical implications. Previously, tumor microenvironment gene expression and DNA methylation-based deconvolution approaches have been shown to deconvolve major cell types. However, existing methods lack accuracy and specificity to tumor type and include limited identification of individual cell types. Results We employed a novel tumor-type-specific hierarchical model using DNA methylation data to deconvolve the tumor microenvironment with high resolution, accuracy, and specificity. The deconvolution algorithm is named HiTIMED. Seventeen cell types from three major tumor microenvironment components can be profiled (tumor, immune, angiogenic) by HiTIMED, and it provides tumor-type-specific models for twenty carcinoma types. We demonstrate the prognostic significance of cell types that other tumor microenvironment deconvolution methods do not capture. Conclusion We developed HiTIMED, a DNA methylation-based algorithm, to estimate cell proportions in the tumor microenvironment with high resolution and accuracy. HiTIMED deconvolution is amenable to archival biospecimens providing high-resolution profiles enabling to study of clinical and biological implications of variation and composition of the tumor microenvironment.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Investigation of the spatial heterogeneity of specific immune cell phenotypes in the tumor microenvironment of follicular lymphoma
    Nelson, Lilli
    Mansfield, James
    Lloyd, Roslyn
    van der Loos, Chris
    Rose, Chris
    Byers, Richard
    CANCER RESEARCH, 2015, 75 (01)
  • [42] Lack of IL-6 in tumor microenvironment augments type-1 anti-tumor immune responses
    Ohno, Yosuke
    Kitamura, Hidemitsu
    Toyoshima, Yujiro
    Xiang, Huihui
    Sumida, Kentaro
    Kaneumi, Shun
    Homma, Shigenori
    Kawamura, Hideki
    Takahashi, Norihiko
    Taketomi, Akinobu
    CANCER SCIENCE, 2018, 109 : 1216 - 1216
  • [43] Cancer-associated fibroblasts as another polarized cell type of the tumor microenvironment
    Augsten, Martin
    FRONTIERS IN ONCOLOGY, 2014, 4
  • [44] The effect of Metformin on the tumor immune microenvironment of colorectal cancer with type 2 diabetes mellitus
    Saito, Akira
    Ohzawa, Hideyuki
    Matsumiya, Misaki
    Takahashi, Rei
    Tamura, Kohei
    Kaneko, Yuki
    Futoh, Yurie
    Kawashima, Rie
    Miyato, Hideyo
    Sata, Naohiro
    Kitayama, Joji
    CANCER SCIENCE, 2024, 115 : 2068 - 2068
  • [45] Application of HiTIMED and cell type adjusted epigenome-wide models identifies driver tumor DNA methylation alterations in multiple cancers
    Vlasac, Irma M.
    Zhang, Ze
    Salas, Lucas A.
    Christensen, Brock C.
    CANCER RESEARCH, 2024, 84 (06)
  • [46] A reference profile-free deconvolution method to infer cancer cell-intrinsic subtypes and tumor-type-specific stromal profiles
    Wang, Li
    Sebra, Robert P.
    Sfakianos, John P.
    Allette, Kimaada
    Wang, Wenhui
    Yoo, Seungyeul
    Bhardwaj, Nina
    Schadt, Eric E.
    Yao, Xin
    Galsky, Matthew D.
    Zhu, Jun
    GENOME MEDICINE, 2020, 12 (01)
  • [47] Characterization of Pleural Mesothelioma by Hierarchical Clustering Analyses Using Immune Cells within Tumor Microenvironment
    Inaguma, Shingo
    Wang, Chengbo
    Ito, Sunao
    Ueki, Akane
    Lasota, Jerzy
    Czapiewski, Piotr
    Langfort, Renata
    Rys, Janusz
    Szpor, Joanna
    Waloszczyk, Piotr
    Okon, Krzysztof
    Biernat, Wojciech
    Takiguchi, Shuji
    Schrump, David S.
    Miettinen, Markku
    Takahashi, Satoru
    PATHOBIOLOGY, 2024, 91 (05) : 313 - 325
  • [48] A reference profile-free deconvolution method to infer cancer cell-intrinsic subtypes and tumor-type-specific stromal profiles
    Li Wang
    Robert P. Sebra
    John P. Sfakianos
    Kimaada Allette
    Wenhui Wang
    Seungyeul Yoo
    Nina Bhardwaj
    Eric E. Schadt
    Xin Yao
    Matthew D. Galsky
    Jun Zhu
    Genome Medicine, 12
  • [49] Spatial resolution of tumor and immune cell lineages in the hypoxic microenvironment of pancreatic ductal adenocarcinoma (PDAC)
    Arvidson, Lisa
    Prioli, Reginaldo
    Jensen, Samuel
    Smith, Michael J.
    White, Katie O.
    Heil-Chapdelaine, Richard A.
    Huang, Chi-Chou
    Phan, Tuan H.
    Sasaki, Hideki
    Angus-Hill, Melinda L.
    CANCER RESEARCH, 2023, 83 (07)
  • [50] Resolving STING-mediated tumor immune microenvironment shift at single-cell resolution
    Tan, Yee Sun
    Heath, Blake R.
    Hill, Brett D.
    Luo, Xiaobo
    Rizvi, Syed M.
    Moghbeli, Toktam
    Hu, Hongxiang
    Siismets, Erica
    Wen, Haitao
    Xie, Yuying
    Sun, Duxin
    Young, Simon
    Zou, Weiping
    Wen, Fei
    Lei, Yu L.
    CLINICAL CANCER RESEARCH, 2020, 26 (12) : 33 - 34