HiTIMED: hierarchical tumor immune microenvironment epigenetic deconvolution for accurate cell type resolution in the tumor microenvironment using tumor-type-specific DNA methylation data

被引:16
|
作者
Zhang, Ze [1 ]
Wiencke, John K. [2 ,3 ]
Kelsey, Karl T. [4 ,5 ]
Koestler, Devin C. [6 ]
Christensen, Brock C. [1 ,7 ,8 ]
Salas, Lucas A. [1 ]
机构
[1] Dartmouth Coll, Hitchcock Med Ctr, Dept Epidemiol, 1 Med Ctr Dr, Lebanon, NH 03756 USA
[2] Univ Calif San Francisco, Dept Neurol Surg, San Francisco, CA 94143 USA
[3] Univ Calif San Francisco, Inst Human Genet, San Francisco, CA 94143 USA
[4] Brown Univ, Dept Epidemiol & Pathol, Providence, RI 02912 USA
[5] Brown Univ, Dept Lab Med, Providence, RI 02912 USA
[6] Univ Kansas, Med Ctr, Dept Biostat & Data Sci, Kansas City, KS 66103 USA
[7] Dartmouth Coll, Dept Mol & Syst Biol, Geisel Sch Med, 1 Med Ctr Dr, Lebanon, NH 03756 USA
[8] Dartmouth Coll, Geisel Sch Med, Dept Community & Family Med, 1 Med Ctr Dr, Lebanon, NH 03756 USA
关键词
DNA methylation; Deconvolution; Tumor microenvironment; Epigenetics; Cancer; Immune microenvironment; Tumor angiogenesis; EPIGENOME-WIDE ASSOCIATION; TURNING COLD; CANCER; ANGIOGENESIS;
D O I
10.1186/s12967-022-03736-6
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Background Cellular compositions of solid tumor microenvironments are heterogeneous, varying across patients and tumor types. High-resolution profiling of the tumor microenvironment cell composition is crucial to understanding its biological and clinical implications. Previously, tumor microenvironment gene expression and DNA methylation-based deconvolution approaches have been shown to deconvolve major cell types. However, existing methods lack accuracy and specificity to tumor type and include limited identification of individual cell types. Results We employed a novel tumor-type-specific hierarchical model using DNA methylation data to deconvolve the tumor microenvironment with high resolution, accuracy, and specificity. The deconvolution algorithm is named HiTIMED. Seventeen cell types from three major tumor microenvironment components can be profiled (tumor, immune, angiogenic) by HiTIMED, and it provides tumor-type-specific models for twenty carcinoma types. We demonstrate the prognostic significance of cell types that other tumor microenvironment deconvolution methods do not capture. Conclusion We developed HiTIMED, a DNA methylation-based algorithm, to estimate cell proportions in the tumor microenvironment with high resolution and accuracy. HiTIMED deconvolution is amenable to archival biospecimens providing high-resolution profiles enabling to study of clinical and biological implications of variation and composition of the tumor microenvironment.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] DISTINCT SYSTEMIC AND TUMOR MICROENVIRONMENT IMMUNE LANDSCAPES DISCRIMINATE ACROSS SELLAR TUMOR TYPES AND CONTROLS THROUGH A METHYLATION-BASED DECONVOLUTION METHOD
    Herrgott, G.
    Asmaro, K.
    Thomas, B.
    Nelson, K.
    Cazacu, S.
    Hasselbach, L.
    Transou, A.
    deCarvalho, A.
    Mukherjee, A.
    Robin, A.
    Lee, I
    Kalkanis, S.
    Rock, J.
    Rock, J.
    Noushmehr, H.
    Castro, A.
    NEURO-ONCOLOGY, 2022, 24
  • [32] Quantification of Tumor-Immune Cell Spatial Relationships in the Lung Tumor Microenvironment Using Single Cell Profiling
    Enfield, Katey
    Kung, Sonia
    Gallagher, Paul
    Milne, Katy
    Chen, Zhaoyang
    Piga, Daniela
    Lam, Stephen
    English, John
    Guillaud, Martial
    Macaulay, Calum
    Lam, Wan
    JOURNAL OF THORACIC ONCOLOGY, 2017, 12 (01) : S826 - S827
  • [33] HiTAIC: Hierarchical tumor artificial intelligence classifier traces tissue of origin and tumor type in primary and metastasized tumors using DNA methylation data
    Zhang, Ze
    Christensen, Brock
    Salas, Lucas
    CANCER RESEARCH, 2023, 83 (07)
  • [34] DNA methylation heterogeneity attributable to a complex tumor immune microenvironment prompts prognostic risk in glioma
    Ma, Shuangyue
    Pan, Xu
    Gan, Jing
    Guo, Xiaxin
    He, Jiaheng
    Hu, Haoyu
    Wang, Yuncong
    Ning, Shangwei
    Zhi, Hui
    EPIGENETICS, 2024, 19 (01)
  • [35] Preliminary machine learning integration of DNA methylation-based tumor immune microenvironment deconvolution with histopathological slides for bladder cancer prognostication
    Azher, Zarif L.
    Zhang, Ze
    Christensen, Brock C.
    Salas, Lucas A.
    Karagas, Margaret R.
    Vaickus, Louis J.
    Fuyura, Hideki
    Yao, Keluo
    Levy, Joshua J.
    CLINICAL CANCER RESEARCH, 2024, 30 (10)
  • [36] Immune Epigenetic Crosstalk Between Malignant B Cells and the Tumor Microenvironment in B Cell Lymphoma
    Mondello, Patrizia
    Ansell, Stephen M.
    Nowakowski, Grzegorz S.
    FRONTIERS IN GENETICS, 2022, 13
  • [37] Spatially resolved tissue imaging to analyze the tumor immune microenvironment: beyond cell-type densities
    Janeiro, Alvaro Lopez
    Wong, Eduardo Miraval
    Jimenez-Sanchez, Daniel
    de Solorzano, Carlos Ortiz
    Lozano, Maria D.
    Teijeira, Alvaro
    Schalper, Kurt A.
    Melero, Ignacio
    De Andrea, Carlos E.
    JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2024, 12 (05)
  • [38] Characterization of Cell-Type-Specific Drug Transport and Resistance of Breast Cancers Using Tumor-Microenvironment-on-Chip
    Shin, Kyeonggon
    Klosterhoff, Brett S.
    Han, Bumsoo
    MOLECULAR PHARMACEUTICS, 2016, 13 (07) : 2214 - 2223
  • [39] Investigation of the spatial heterogeneity of specific immune cell phenotypes in the tumor microenvironment of follicular lymphoma
    Mansfield, James
    Nelson, Lili
    Rose, Chris
    Van der Loos, Chris
    Byers, Richard
    JOURNAL OF IMMUNOLOGY, 2014, 192
  • [40] Breaking the Immune Complexity of the Tumor Microenvironment Using Single-Cell Technologies
    Caligola, Simone
    De Sanctis, Francesco
    Cane, Stefania
    Ugel, Stefano
    FRONTIERS IN GENETICS, 2022, 13