Mass quantization of the Schwarzschild black hole

被引:55
|
作者
Vaz, C [1 ]
Witten, L
机构
[1] Johns Hopkins Univ, Dept Phys, Baltimore, MD 21218 USA
[2] Univ Cincinnati, Dept Phys, Cincinnati, OH 45221 USA
来源
PHYSICAL REVIEW D | 1999年 / 60卷 / 02期
关键词
D O I
10.1103/PhysRevD.60.024009
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We examine the Wheeler-DeWitt equation for a static, eternal Schwarzschild black hole in Kuchar-Brown variables and obtain its energy eigenstates. Consistent solutions vanish in the exterior of the Kruskal manifold and are nonvanishing only in the interior. The system is reminiscent of a particle in a box. States of definite parity avoid the singular geometry by vanishing at the origin. These definite parity states admit a discrete energy spectrum, depending on one quantum number which determines the Arnowitt-Deser-Misner mass of the black hole according to a relation conjectured long ago by Bekenstein M similar to root nM(p). If attention is restricted only to these quantized energy states, a black hole is described not only by its mass but also by its parity. States of indefinite parity do not admit a quantized mass spectrum. [S0556-2821(99)01914-1].
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Quantum Phenomena Inside a Black Hole: Quantization of the Scalar Field Iniside Horizon in Schwarzschild Spacetime
    Gusin, Pawel
    Radosz, Andrzej
    Augousti, Andy T.
    Polonyi, Janos
    Zaslavskii, Oleg B.
    Sciborski, Romuald J.
    [J]. UNIVERSE, 2023, 9 (07)
  • [32] Quantum corrections to Schwarzschild black hole
    Calmet, Xavier
    El-Menoufi, Basem Kamal
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2017, 77 (04):
  • [33] Unruh Entropy of a Schwarzschild Black Hole
    Teslyk, Maksym
    Teslyk, Olena
    Bravina, Larissa
    Zabrodin, Evgeny
    [J]. PARTICLES, 2023, 6 (03) : 864 - 875
  • [34] Schwarzschild black hole in noncommutative spaces
    Forough Nasseri
    [J]. General Relativity and Gravitation, 2005, 37 : 2223 - 2226
  • [35] Entropy of the Schwarzschild black hole and the string-black-hole correspondence
    Solodukhin, SN
    [J]. PHYSICAL REVIEW D, 1998, 57 (04): : 2410 - 2414
  • [36] Quantumness near a Schwarzschild black hole
    Haddadi, S.
    Yurischev, M. A.
    Abd-Rabbou, M. Y.
    Azizi, M.
    Pourkarimi, M. R.
    Ghominejad, M.
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2024, 84 (01):
  • [37] Schwarzschild black hole in noncommutative spaces
    Nasseri, F
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2005, 37 (12) : 2223 - 2226
  • [38] Statistical entropy of the Schwarzschild black hole
    Cadoni, Mariano
    [J]. MODERN PHYSICS LETTERS A, 2006, 21 (24) : 1879 - 1887
  • [39] The Thermodynamics of the Perturbed Schwarzschild Black Hole
    Amir Sultan Khan
    Farhad Ali
    Israr Ali Khan
    [J]. International Journal of Theoretical Physics, 2020, 59 : 2214 - 2222
  • [40] Topologically quantized Schwarzschild black hole
    Halilsoy, M.
    Mazharimousavi, S. Habib
    [J]. PHYSICA SCRIPTA, 2023, 98 (08)