ON MINIMAL ASYMPTOTIC BASES OF ORDER THREE

被引:7
|
作者
Ling, Dengrong [1 ]
Tang, Min [1 ]
机构
[1] Anhui Normal Univ, Sch Math & Comp Sci, Wuhu 241003, Peoples R China
基金
中国国家自然科学基金;
关键词
minimal asymptotic basis; g-adic representation;
D O I
10.4064/cm6901-2-2017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a subset of N, and W be a nonempty subset of N. Denote by F*(W) the set of all finite, nonempty subsets of W. For integer g >= 2, let A(g) (W) be the set of all numbers of the form Sigma(af)(f is an element of F)g(f) where F is an element of F*(W) and 1 <= a(f) <= g - 1. For i = 0; 1; 2, let W-i = {n is an element of N vertical bar n equivalent to i (mod 3)}. We show that for any g >= 2, the set A = A(g) (W-0) boolean OR A(g) (W-1) boolean OR A(g) (W-2) is a minimal asymptotic basis of order three. Moreover, we construct an asymptotic basis of order three containing no subset which is a minimal asymptotic basis of order three.
引用
收藏
页码:9 / 18
页数:10
相关论文
共 50 条
  • [41] The height of minimal Hilbert bases
    Henk M.
    Weismantel R.
    Results in Mathematics, 1997, 32 (3-4) : 298 - 303
  • [42] Robustness and perturbations of minimal bases
    Van Dooren, Paul
    Dopico, Froilan M.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 542 : 246 - 281
  • [43] Computing minimal interpolation bases
    Jeannerod, Claude-Pierre
    Neiger, Vincent
    Schost, Eric
    Villard, Gilles
    JOURNAL OF SYMBOLIC COMPUTATION, 2017, 83 : 272 - 314
  • [44] MINIMAL BASES FOR CUBIC FIELDS
    SHAPIRO, HN
    SPARER, GH
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1991, 44 (8-9) : 1121 - 1136
  • [45] REGULAR SEQUENCES AND MINIMAL BASES
    DAVIS, ED
    PACIFIC JOURNAL OF MATHEMATICS, 1971, 36 (02) : 323 - &
  • [46] MINIMAL BASES OF POLYNOMIAL IDEALS
    BRESINSKY, H
    FULLER, MJ
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (02): : A274 - A274
  • [47] Certification of Minimal Approximant Bases
    Giorgi, Pascal
    Neiger, Vincent
    ISSAC'18: PROCEEDINGS OF THE 2018 ACM INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, 2018, : 167 - 174
  • [48] MINIMAL INTEGRITY BASES OF INVARIANTS OF TWO SECOND ORDER ANTISYMMETRIC OR SYMMETRIC TENSORS IN THE MINKOWSKI SPACE
    Chen, Yannan
    Huang, Zheng-Hai
    Qi, Liqun
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2023, 24 (12) : 2667 - 2694
  • [49] Asymptotic enumeration of Minimal Automata
    Bassino, Frederique
    David, Julien
    Sportiello, Andrea
    29TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, (STACS 2012), 2012, 14 : 88 - 99
  • [50] On Sidon sets which are asymptotic bases
    Kiss, S. Z.
    ACTA MATHEMATICA HUNGARICA, 2010, 128 (1-2) : 46 - 58