Let A be a subset of N, and W be a nonempty subset of N. Denote by F*(W) the set of all finite, nonempty subsets of W. For integer g >= 2, let A(g) (W) be the set of all numbers of the form Sigma(af)(f is an element of F)g(f) where F is an element of F*(W) and 1 <= a(f) <= g - 1. For i = 0; 1; 2, let W-i = {n is an element of N vertical bar n equivalent to i (mod 3)}. We show that for any g >= 2, the set A = A(g) (W-0) boolean OR A(g) (W-1) boolean OR A(g) (W-2) is a minimal asymptotic basis of order three. Moreover, we construct an asymptotic basis of order three containing no subset which is a minimal asymptotic basis of order three.
机构:
Budapest Univ Technol & Econ, Inst Math, MTA BME Lendulet Future Internet Res Grp, BO Box, H-1529 Budapest, Hungary
Hungarian Acad Sci, Comp & Automat Res Inst, H-1111 Budapest, HungaryBudapest Univ Technol & Econ, Inst Math, MTA BME Lendulet Future Internet Res Grp, BO Box, H-1529 Budapest, Hungary
Kiss, Sandor Z.
Rozgonyi, Eszter
论文数: 0引用数: 0
h-index: 0
机构:
Budapest Univ Technol & Econ, Inst Math, H-1529 Budapest, HungaryBudapest Univ Technol & Econ, Inst Math, MTA BME Lendulet Future Internet Res Grp, BO Box, H-1529 Budapest, Hungary
Rozgonyi, Eszter
Sandor, Csaba
论文数: 0引用数: 0
h-index: 0
机构:
Budapest Univ Technol & Econ, Inst Math, H-1529 Budapest, HungaryBudapest Univ Technol & Econ, Inst Math, MTA BME Lendulet Future Internet Res Grp, BO Box, H-1529 Budapest, Hungary
机构:
Minnan Normal Univ, Sch Math & Stat, Zhangzhou 363000, Fujian, Peoples R ChinaMinnan Normal Univ, Sch Math & Stat, Zhangzhou 363000, Fujian, Peoples R China
Li, Yiliang
Li, Jinjin
论文数: 0引用数: 0
h-index: 0
机构:
Minnan Normal Univ, Sch Math & Stat, Zhangzhou 363000, Fujian, Peoples R China
Minnan Normal Univ, Lab Granular Comp, Zhangzhou 363000, Fujian, Peoples R ChinaMinnan Normal Univ, Sch Math & Stat, Zhangzhou 363000, Fujian, Peoples R China
Li, Jinjin
Feng, Jun-e
论文数: 0引用数: 0
h-index: 0
机构:
Minnan Normal Univ, Sch Math & Stat, Zhangzhou 363000, Fujian, Peoples R ChinaMinnan Normal Univ, Sch Math & Stat, Zhangzhou 363000, Fujian, Peoples R China
Feng, Jun-e
Wang, Hongkun
论文数: 0引用数: 0
h-index: 0
机构:
Georgetown Univ, Dept Biostat Bioinformat & Biomath, Washington, DC 20057 USAMinnan Normal Univ, Sch Math & Stat, Zhangzhou 363000, Fujian, Peoples R China