ON MINIMAL ASYMPTOTIC BASES OF ORDER THREE

被引:7
|
作者
Ling, Dengrong [1 ]
Tang, Min [1 ]
机构
[1] Anhui Normal Univ, Sch Math & Comp Sci, Wuhu 241003, Peoples R China
基金
中国国家自然科学基金;
关键词
minimal asymptotic basis; g-adic representation;
D O I
10.4064/cm6901-2-2017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a subset of N, and W be a nonempty subset of N. Denote by F*(W) the set of all finite, nonempty subsets of W. For integer g >= 2, let A(g) (W) be the set of all numbers of the form Sigma(af)(f is an element of F)g(f) where F is an element of F*(W) and 1 <= a(f) <= g - 1. For i = 0; 1; 2, let W-i = {n is an element of N vertical bar n equivalent to i (mod 3)}. We show that for any g >= 2, the set A = A(g) (W-0) boolean OR A(g) (W-1) boolean OR A(g) (W-2) is a minimal asymptotic basis of order three. Moreover, we construct an asymptotic basis of order three containing no subset which is a minimal asymptotic basis of order three.
引用
收藏
页码:9 / 18
页数:10
相关论文
共 50 条
  • [21] SETS OF NATURAL NUMBERS WITH NO MINIMAL ASYMPTOTIC BASES
    ERDOS, P
    NATHANSON, MB
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 70 (02) : 100 - 102
  • [22] EXACT ORDER OF SUBSETS OF ASYMPTOTIC BASES
    SHENG, C
    GU, WZ
    JOURNAL OF NUMBER THEORY, 1992, 41 (01) : 15 - 21
  • [23] On strongly asymptotic bases of order h
    Chen, Shi-Qiang
    RAMANUJAN JOURNAL, 2025, 66 (04):
  • [24] On Minimal Asymptotic Basis of Order 4
    Jingwen LI
    Jiawen LI
    Journal of Mathematical Research with Applications, 2016, 36 (06) : 651 - 658
  • [25] ON SIDON SETS WHICH ARE ASYMPTOTIC BASES OF ORDER 4
    Kiss, Sandor Z.
    Rozgonyi, Eszter
    Sandor, Csaba
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2014, 51 (02) : 393 - 413
  • [26] On minimal asymptotic basis of order g-1
    Sun, Cui-Fang
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2019, 30 (01): : 128 - 135
  • [27] Synthesis of complete rational orthonormal bases with prescribed asymptotic order
    Akçay, H
    AUTOMATICA, 2001, 37 (04) : 559 - 564
  • [28] Minimal bases of three-dimensional complete lattices
    Bykovskii, VA
    Gorkusha, OA
    SBORNIK MATHEMATICS, 2001, 192 (1-2) : 215 - 223
  • [29] EXACT ORDER OF SUBSETS OF ASYMPTOTIC BASES IN ADDITIVE NUMBER-THEORY
    JIA, XD
    JOURNAL OF NUMBER THEORY, 1988, 28 (02) : 205 - 218
  • [30] Minimal Bases and Minimal Sub-bases for Topological Spaces
    Li, Yiliang
    Li, Jinjin
    Feng, Jun-e
    Wang, Hongkun
    FILOMAT, 2019, 33 (07) : 1957 - 1965