High order nonlinear interpolatory reconstruction operators and associated multiresolution schemes

被引:14
|
作者
Amat, S. [1 ]
Dadourian, K. [2 ]
Liandrat, J. [3 ]
Trillo, J. C. [1 ]
机构
[1] Univ Politecn Cartagena, Dept Matemat Aplicada & Estadist, Cartagena, Spain
[2] Aix Marseille Univ, Marseille, France
[3] Cent Marseille LATP, Marseille, France
关键词
Interpolation; Reconstruction; Nonlinearity; Power-means; Subdivision schemes; Multiresolution; SUBDIVISION SCHEMES; LIFTING SCHEME; ENO SCHEMES; WAVELETS; CONSTRUCTION; COMPRESSION; SMOOTHNESS; RESOLUTION; STABILITY; FRAMEWORK;
D O I
10.1016/j.cam.2013.03.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the construction and analysis of a new family of nonlinear reconstruction operators and associated interpolating subdivision schemes. They are based on centered piecewise nonlinear polynomial interpolations adapted to discontinuities. We analyze both subdivision schemes and multiresolution schemes associated to these reconstructions. Some practical properties of these schemes are demonstrated in various numerical examples. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:163 / 180
页数:18
相关论文
共 50 条
  • [31] High-order behaviors of weighted compact fifth-order nonlinear schemes
    Xin, Liu
    Deng, Xiaogang
    Mao, Meiliang
    AIAA JOURNAL, 2007, 45 (08) : 2093 - 2097
  • [32] High-order behaviors of weighted compact fifth-order nonlinear schemes
    Liu, Xin
    Deng, Xiaogang
    Mao, Meiliang
    AIAA Journal, 2007, 45 (08): : 2093 - 2097
  • [33] High-order adaptive finite-volume schemes in the context of multiresolution analysis for dyadic grids
    Douglas A. Castro
    Sônia M. Gomes
    Jorge Stolfi
    Computational and Applied Mathematics, 2016, 35 : 1 - 16
  • [34] High-order adaptive finite-volume schemes in the context of multiresolution analysis for dyadic grids
    Castro, Douglas A.
    Gomes, Sonia M.
    Stolfi, Jorge
    COMPUTATIONAL & APPLIED MATHEMATICS, 2016, 35 (01): : 1 - 16
  • [35] High-order accurate dissipative weighted compact nonlinear schemes
    Deng, XG
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2002, 45 (03): : 356 - 370
  • [36] Performance of nonlinear dispersive APML in high-order FDTD schemes
    Fujii, M
    Tentzeris, MM
    Russer, P
    2003 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, VOLS 1-3, 2003, : 1129 - 1132
  • [37] High-order schemes for the fractional coupled nonlinear Schrodinger equation
    Yin, Fengli
    Xu, Dongliang
    Yang, Wenjie
    NETWORKS AND HETEROGENEOUS MEDIA, 2023, 18 (04) : 1434 - 1453
  • [38] Nonlinear weights for shock capturing schemes with unconditionally optimal high order
    Chen, Yaming
    Deng, Xiaogang
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 478
  • [39] High-order relaxation schemes for nonlinear degenerate diffusion problems
    Cavalli, Fausto
    Naldi, Giovanni
    Puppo, Gabriella
    Semplice, Matteo
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (05) : 2098 - 2119
  • [40] High-order accurate dissipative weighted compact nonlinear schemes
    邓小刚
    Science China Mathematics, 2002, (03) : 356 - 370