High order nonlinear interpolatory reconstruction operators and associated multiresolution schemes

被引:14
|
作者
Amat, S. [1 ]
Dadourian, K. [2 ]
Liandrat, J. [3 ]
Trillo, J. C. [1 ]
机构
[1] Univ Politecn Cartagena, Dept Matemat Aplicada & Estadist, Cartagena, Spain
[2] Aix Marseille Univ, Marseille, France
[3] Cent Marseille LATP, Marseille, France
关键词
Interpolation; Reconstruction; Nonlinearity; Power-means; Subdivision schemes; Multiresolution; SUBDIVISION SCHEMES; LIFTING SCHEME; ENO SCHEMES; WAVELETS; CONSTRUCTION; COMPRESSION; SMOOTHNESS; RESOLUTION; STABILITY; FRAMEWORK;
D O I
10.1016/j.cam.2013.03.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the construction and analysis of a new family of nonlinear reconstruction operators and associated interpolating subdivision schemes. They are based on centered piecewise nonlinear polynomial interpolations adapted to discontinuities. We analyze both subdivision schemes and multiresolution schemes associated to these reconstructions. Some practical properties of these schemes are demonstrated in various numerical examples. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:163 / 180
页数:18
相关论文
共 50 条
  • [21] High Order Padé Schemes for Nonlinear Wave Propagation Problems
    Peiling Li~* Ruxun Liu (Department of Mathematics
    Numerical Mathematics:A Journal of Chinese Universities(English Series), 2007, (04) : 370 - 382
  • [22] High order explicit schemes for nonlinear structural mechanic problems
    Rachik, Mohamed
    Roelandt, Jean Marc
    Revue Europeenne des Elements, 1998, 7 (04): : 401 - 420
  • [23] High-Order Schemes for Nonlinear Fractional Differential Equations
    Alsayyed, Omar
    Awawdeh, Fadi
    Al-Shara', Safwan
    Rawashdeh, Edris
    FRACTAL AND FRACTIONAL, 2022, 6 (12)
  • [24] ON THE CONSTRUCTION OF MULTIRESOLUTION ANALYSES ASSOCIATED TO GENERAL SUBDIVISION SCHEMES
    Kui, Zhiqing
    Baccou, Jean
    Liandrat, Jacques
    MATHEMATICS OF COMPUTATION, 2021, 90 (331) : 2185 - 2208
  • [25] Low-order reconstruction operators on polyhedral meshes: application to compatible discrete operator schemes
    Bonelle, Jerome
    Di Pietro, Daniele A.
    Ern, Alexandre
    COMPUTER AIDED GEOMETRIC DESIGN, 2015, 35-36 : 27 - 41
  • [26] On the use of reconstruction operators in discontinuous Galerkin schemes
    Kučera, V.
    Lecture Notes in Computational Science and Engineering, 2014, 103 : 75 - 83
  • [27] High order implicit finite difference schemes with a semi-implicit WENO reconstruction for nonlinear degenerate parabolic equations
    Zhang, Peng
    Xiong, Tao
    Journal of Computational Physics, 2022, 467
  • [28] High-Order Flux Reconstruction Schemes with Minimal Dispersion and Dissipation
    Asthana, Kartikey
    Jameson, Antony
    JOURNAL OF SCIENTIFIC COMPUTING, 2015, 62 (03) : 913 - 944
  • [29] High order implicit finite difference schemes with a semi-implicit WENO reconstruction for nonlinear degenerate parabolic equations
    Zhang, Peng
    Xiong, Tao
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 467
  • [30] High-Order Flux Reconstruction Schemes with Minimal Dispersion and Dissipation
    Kartikey Asthana
    Antony Jameson
    Journal of Scientific Computing, 2015, 62 : 913 - 944