High order nonlinear interpolatory reconstruction operators and associated multiresolution schemes

被引:14
|
作者
Amat, S. [1 ]
Dadourian, K. [2 ]
Liandrat, J. [3 ]
Trillo, J. C. [1 ]
机构
[1] Univ Politecn Cartagena, Dept Matemat Aplicada & Estadist, Cartagena, Spain
[2] Aix Marseille Univ, Marseille, France
[3] Cent Marseille LATP, Marseille, France
关键词
Interpolation; Reconstruction; Nonlinearity; Power-means; Subdivision schemes; Multiresolution; SUBDIVISION SCHEMES; LIFTING SCHEME; ENO SCHEMES; WAVELETS; CONSTRUCTION; COMPRESSION; SMOOTHNESS; RESOLUTION; STABILITY; FRAMEWORK;
D O I
10.1016/j.cam.2013.03.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the construction and analysis of a new family of nonlinear reconstruction operators and associated interpolating subdivision schemes. They are based on centered piecewise nonlinear polynomial interpolations adapted to discontinuities. We analyze both subdivision schemes and multiresolution schemes associated to these reconstructions. Some practical properties of these schemes are demonstrated in various numerical examples. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:163 / 180
页数:18
相关论文
共 50 条
  • [1] Approximation order of interpolatory nonlinear subdivision schemes
    Dyn, Nira
    Grohs, Philipp
    Wallner, Johannes
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (07) : 1697 - 1703
  • [2] Proving convexity preserving properties of interpolatory subdivision schemes through reconstruction operators
    Amat, S.
    Donat, R.
    Trillo, J. C.
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (14) : 7413 - 7421
  • [3] Full rank interpolatory subdivision schemes: Kronecker, filters and multiresolution
    Conti, Costanza
    Cotronei, Mariantonia
    Sauer, Tomas
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (07) : 1649 - 1659
  • [4] Analysis of a class of nonlinear subdivision schemes and associated multiresolution transforms
    S. Amat
    K. Dadourian
    J. Liandrat
    Advances in Computational Mathematics, 2011, 34 : 253 - 277
  • [5] Analysis of a class of nonlinear subdivision schemes and associated multiresolution transforms
    Amat, S.
    Dadourian, K.
    Liandrat, J.
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2011, 34 (03) : 253 - 277
  • [6] Stable interpolatory nonlinear multiresolution transforms in 3D
    Amat, S
    Busquier, S
    Trillo, JC
    ICNAAM 2004: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2004, 2004, : 18 - 20
  • [7] Interpolatory subdivision schemes with the optimal approximation order
    Zhang, Baoxing
    Zheng, Hongchan
    Song, Weijie
    Lin, Zengyao
    Zhou, Jie
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 347 : 1 - 14
  • [8] NONSTATIONARY INTERPOLATORY SUBDIVISION SCHEMES REPRODUCING HIGH-ORDER EXPONENTIAL POLYNOMIALS
    Zhou, Jie
    Zheng, Hongchan
    Li, Zhaohong
    Song, Weijie
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2019, 49 (07) : 2429 - 2457
  • [9] An improved Roe solver for high order reconstruction schemes
    Musa, Omer
    Huang, Guoping
    Yu, Zonghan
    Li, Qian
    COMPUTERS & FLUIDS, 2020, 207
  • [10] ON A NONLINEAR 4-POINT TERNARY AND INTERPOLATORY MULTIRESOLUTION SCHEME ELIMINATING THE GIBBS PHENOMENON
    Amat, S.
    Dadourian, K.
    Liandrat, J.
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2010, 7 (02) : 261 - 280