Clustering of Small-Sample Single-Cell RNA-Seq Data via Feature Clustering and Selection

被引:2
|
作者
Vans, Edwin [1 ,2 ]
Sharma, Alok [1 ,5 ,6 ,7 ]
Patil, Ashwini [8 ]
Shigemizu, Daichi [3 ,4 ,5 ,6 ]
Tsunoda, Tatsuhiko [4 ,5 ,6 ]
机构
[1] Univ South Pacific, Sch Engn & Phys, Suva, Fiji
[2] Fiji Natl Univ, Sch Elect & Elect Engn, Suva, Fiji
[3] Natl Ctr Geriatr & Gerontol, Med Genome Ctr, Obu, Aichi 4748511, Japan
[4] Tokyo Med & Dent Univ TMDU, Med Res Inst, Dept Med Sci Math, Tokyo 1138510, Japan
[5] RIKEN, Ctr Integrat Med Sci, Yokohama, Kanagawa 2300045, Japan
[6] JST, CREST, Tokyo 1138510, Japan
[7] Griffith Univ, Inst Integrated & Intelligent Syst, Brisbane, Qld 4111, Australia
[8] Univ Tokyo, Inst Med Sci, Minato Ku, 4-6-1 Shirokanedai, Tokyo 1088639, Japan
关键词
Single-cell RNA-Seq; Hierarchical clustering; Feature selection; HETEROGENEITY; EMBRYOS; FATE;
D O I
10.1007/978-3-030-29894-4_36
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present FeatClust, a software tool for clustering small sample size single-cell RNA-Seq datasets. The FeatClust approach is based on feature selection. It divides features into several groups by performing agglomerative hierarchical clustering and then iteratively clustering the samples and removing features belonging to groups with the least variance across samples. The optimal number of feature groups is selected based on silhouette analysis on the clustered data, i.e., selecting the clustering with the highest average silhouette coefficient. FeatClust also allows one to visually choose the number of clusters if it is not known, by generating silhouette plot for a chosen number of groupings of the dataset. We cluster five small sample single-cell RNA-seq datasets and use the adjusted rand index metric to compare the results with other clustering packages. The results are promising and show the effectiveness of FeatClust on small sample size datasets.
引用
收藏
页码:445 / 456
页数:12
相关论文
共 50 条
  • [1] scFseCluster: a feature selection-enhanced clustering for single-cell RNA-seq data
    Wang, Zongqin
    Xie, Xiaojun
    Liu, Shouyang
    Ji, Zhiwei
    LIFE SCIENCE ALLIANCE, 2023, 6 (12)
  • [2] FEATS: feature selection-based clustering of single-cell RNA-seq data
    Vans, Edwin
    Patil, Ashwini
    Sharma, Alok
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (04)
  • [3] Accurate feature selection improves single-cell RNA-seq cell clustering
    Su, Kenong
    Yu, Tianwei
    Wu, Hao
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (05)
  • [4] Comparison of Gene Selection Methods for Clustering Single-cell RNA-seq Data
    Zhu, Xiaoshu
    Wang, Jianxin
    Li, Rongruan
    Peng, Xiaoqing
    CURRENT BIOINFORMATICS, 2023, 18 (01) : 1 - 11
  • [5] Analysis of Single-Cell RNA-seq Data by Clustering Approaches
    Zhu, Xiaoshu
    Li, Hong-Dong
    Guo, Lilu
    Wu, Fang-Xiang
    Wang, Jianxin
    CURRENT BIOINFORMATICS, 2019, 14 (04) : 314 - 322
  • [6] Challenges in unsupervised clustering of single-cell RNA-seq data
    Kiselev, Vladimir Yu
    Andrews, Tallulah S.
    Hemberg, Martin
    NATURE REVIEWS GENETICS, 2019, 20 (05) : 273 - 282
  • [7] Deep Learning for Clustering Single-cell RNA-seq Data
    Zhu, Yuan
    Bai, Litai
    Ning, Zilin
    Fu, Wenfei
    Liu, Jie
    Jiang, Linfeng
    Fei, Shihuang
    Gong, Shiyun
    Lu, Lulu
    Deng, Minghua
    Yi, Ming
    CURRENT BIOINFORMATICS, 2024, 19 (03) : 193 - 210
  • [8] Feature Selection in Single-Cell RNA-seq Data via a Genetic Algorithm
    Chatzilygeroudis, Konstantinos I.
    Vrahatis, Aristidis G.
    Tasoulis, Sotiris K.
    Vrahatis, Michael N.
    LEARNING AND INTELLIGENT OPTIMIZATION, LION 15, 2021, 12931 : 66 - 79
  • [9] SAFE-clustering: Single-cell Aggregated (from Ensemble) clustering for single-cell RNA-seq data
    Yang, Yuchen
    Huh, Ruth
    Culpepper, Houston W.
    Lin, Yuan
    Love, Michael I.
    Li, Yun
    BIOINFORMATICS, 2019, 35 (08) : 1269 - 1277
  • [10] An active learning approach for clustering single-cell RNA-seq data
    Lin, Xiang
    Liu, Haoran
    Wei, Zhi
    Roy, Senjuti Basu
    Gao, Nan
    LABORATORY INVESTIGATION, 2022, 102 (03) : 227 - 235