On wavelet analysis of the nth order fractional Brownian motion

被引:0
|
作者
Kortas, Hedi [1 ]
Dhifaoui, Zouhaier [1 ]
Ben Ammou, Samir [2 ]
机构
[1] Higher Inst Management, Sousse 4000, Tunisia
[2] Fac Sci, Computat Math Lab, Monastir 5000, Tunisia
来源
STATISTICAL METHODS AND APPLICATIONS | 2012年 / 21卷 / 03期
关键词
nth order fBm; Scaling exponent; Wavelet transform; Derivative operator; Signal-to-noise ratio; Weighted least squares estimator; CHAOTIC DYNAMICAL-SYSTEM; TIME-SERIES; UNIT-ROOT; EXPONENT; SPACE;
D O I
10.1007/s10260-012-0187-2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we investigate the use of wavelet techniques in the study of the nth order fractional Brownian motion (n-fBm). First, we exploit the continuous wavelet transform's capabilities in derivative calculation to construct a two-step estimator of the scaling exponent of the n-fBm process. We show, via simulation, that the proposed method improves the estimation performance of the n-fBm signals contaminated by large-scale noise. Second, we analyze the statistical properties of the n-fBm process in the time-scale plan. We demonstrate that, for a convenient choice of the wavelet basis, the discrete wavelet detail coefficients of the n-fBm process are stationary at each resolution level whereas their variance exhibits a power-law behavior. Using the latter property, we discuss a weighted least squares regression based-estimator for this class of stochastic process. Experiments carried out on simulated and real-world datasets prove the relevance of the proposed method.
引用
收藏
页码:251 / 277
页数:27
相关论文
共 50 条
  • [41] TEMPERED FRACTIONAL BROWNIAN MOTION: WAVELET ESTIMATION AND MODELING OF TURBULENCE IN GEOPHYSICAL FLOWS
    Boniece, B. C.
    Sabzikar, F.
    Didier, G.
    [J]. 2018 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2018, : 174 - 178
  • [42] Analysis of Piecewise Fractional Brownian Motion Signals and Textures
    Khawaled, Samah
    Zachevsky, Ido
    Zeevi, Yehoshua Y.
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON THE SCIENCE OF ELECTRICAL ENGINEERING IN ISRAEL (ICSEE), 2018,
  • [43] Analysis of a stochastic SIR model with fractional Brownian motion
    Caraballo, Tomas
    Keraani, Sami
    [J]. STOCHASTIC ANALYSIS AND APPLICATIONS, 2018, 36 (05) : 895 - 908
  • [44] Quality of synthesis and analysis methods for fractional Brownian motion
    Jennane, R
    Harba, R
    Jacquet, G
    [J]. 1996 IEEE DIGITAL SIGNAL PROCESSING WORKSHOP, PROCEEDINGS, 1996, : 307 - 310
  • [45] Statistical analysis of superstatistical fractional Brownian motion and applications
    Mackala, Arleta
    Magdziarz, Marcin
    [J]. PHYSICAL REVIEW E, 2019, 99 (01)
  • [46] Oscillatory Fractional Brownian Motion
    Bojdecki, T.
    Gorostiza, L. G.
    Talarczyk, A.
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2013, 127 (01) : 193 - 215
  • [47] On the maximum of a fractional Brownian motion
    Molchan, GM
    [J]. THEORY OF PROBABILITY AND ITS APPLICATIONS, 1999, 44 (01) : 97 - 102
  • [48] LACUNARY FRACTIONAL BROWNIAN MOTION
    Clausel, Marianne
    [J]. ESAIM-PROBABILITY AND STATISTICS, 2012, 16 : 352 - 374
  • [49] Tempered fractional Brownian motion
    Meerschaert, Mark M.
    Sabzikar, Farzad
    [J]. STATISTICS & PROBABILITY LETTERS, 2013, 83 (10) : 2269 - 2275
  • [50] Oscillatory Fractional Brownian Motion
    T. Bojdecki
    L. G. Gorostiza
    A. Talarczyk
    [J]. Acta Applicandae Mathematicae, 2013, 127 : 193 - 215