A hybrid artificial neural networks and particle swarm optimization for function approximation

被引:0
|
作者
Su, Tejen [1 ]
Jhang, Jyunwei [1 ]
Hou, Chengchih [1 ]
机构
[1] Natl Kaohsiung Univ Appl Sci, Dept Elect Engn, Kaohsiung 807, Taiwan
关键词
artificial neural networks; particle swarm optimization; function approximation; feedforward network;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, the weights of the Artificial Neural Networks (ANN) are trained by Particle Swarm Optimization (PSO). Because PSO has the probabilistic mechanism, and multi-starting points, hence the PSO can avoid getting into the local optimal solutions. The demonstrated examples are presented to illustrate the better performance of the proposed methodology (PSO-ANN) than other existing methods.
引用
收藏
页码:2363 / 2374
页数:12
相关论文
共 50 条
  • [41] The optimal combination: Grammatical swarm, particle swarm optimization and neural networks
    de Mingo Lopez, Luis Fernando
    Gomez Blas, Nuria
    Arteta, Alberto
    [J]. JOURNAL OF COMPUTATIONAL SCIENCE, 2012, 3 (1-2) : 46 - 55
  • [42] Development of Hybrid Artificial Neural Network-Particle Swarm Optimization Model and Comparison of Genetic and Particle Swarm Algorithms for Optimization of Machining Fixture Layout
    Ramesh, M.
    Sundararaman, K. A.
    Sabareeswaran, M.
    Srinivasan, R.
    [J]. INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING, 2022, 23 (12) : 1411 - 1430
  • [43] Training Neural Networks by Continuation Particle Swarm Optimization
    Rojas-Delgado, Jairo
    Trujillo-Rasua, Rafael
    [J]. PROGRESS IN ARTIFICIAL INTELLIGENCE AND PATTERN RECOGNITION, IWAIPR 2018, 2018, 11047 : 59 - 67
  • [44] Prediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networks
    Momeni, Ehsan
    Armaghani, Danial Jahed
    Hajihassani, Mohsen
    Amin, Mohd For Mohd
    [J]. MEASUREMENT, 2015, 60 : 50 - 63
  • [45] Injection molding process optimization of a bi-aspheric lens using hybrid artificial neural networks (ANNs) and particle swarm optimization (PSO)
    Bensingh, R. Joseph
    Machavaram, Rajendra
    Boopathy, S. Rajendra
    Jebaraj, C.
    [J]. MEASUREMENT, 2019, 134 : 359 - 374
  • [46] Hybrid Optimization Algorithm lased on Mean Particle Swarm and Artificial Fish Swarm
    Zhou, Yongquan
    Huang, Xingshou
    Yang, Yan
    Wu, Jinzhao
    [J]. INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL, 2012, 15 (02): : 763 - 777
  • [47] Unsupervised Design of Artificial Neural Networks via Multi-Dimensional Particle Swarm Optimization
    Kiranyaz, Serkan
    Ince, Turker
    Yildirim, Alper
    Gabbouj, Moncef
    [J]. 19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 432 - +
  • [48] Nonlinear Electrical Impedance Tomography Reconstruction Using Artificial Neural Networks and Particle Swarm Optimization
    Martin, Sebastien
    Choi, Charles T. M.
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2016, 52 (03)
  • [49] The Integration of Artificial Neural Networks and Particle Swarm Optimization to Forecast World Green Energy Consumption
    Assareh, E.
    Behrang, M. A.
    Ghanbarzadeh, A.
    [J]. ENERGY SOURCES PART B-ECONOMICS PLANNING AND POLICY, 2012, 7 (04) : 398 - 410
  • [50] The algorithms optimization of artificial neural network based on particle swarm
    [J]. Yang, Xin-Quan, 1600, Bentham Science Publishers B.V., P.O. Box 294, Bussum, 1400 AG, Netherlands (08):