A hybrid artificial neural networks and particle swarm optimization for function approximation

被引:0
|
作者
Su, Tejen [1 ]
Jhang, Jyunwei [1 ]
Hou, Chengchih [1 ]
机构
[1] Natl Kaohsiung Univ Appl Sci, Dept Elect Engn, Kaohsiung 807, Taiwan
关键词
artificial neural networks; particle swarm optimization; function approximation; feedforward network;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, the weights of the Artificial Neural Networks (ANN) are trained by Particle Swarm Optimization (PSO). Because PSO has the probabilistic mechanism, and multi-starting points, hence the PSO can avoid getting into the local optimal solutions. The demonstrated examples are presented to illustrate the better performance of the proposed methodology (PSO-ANN) than other existing methods.
引用
收藏
页码:2363 / 2374
页数:12
相关论文
共 50 条
  • [21] A New Approach for the Optimization of Biowaste Composting Using Artificial Neural Networks and Particle Swarm Optimization
    Jonathan Soto-Paz
    Wilfredo Alfonso-Morales
    Eduardo Caicedo-Bravo
    Edgar Ricardo Oviedo-Ocaña
    Patricia Torres-Lozada
    Pablo Cesar Manyoma
    Antoni Sanchez
    Dimitrios Komilis
    [J]. Waste and Biomass Valorization, 2020, 11 : 3937 - 3951
  • [22] A New Approach for the Optimization of Biowaste Composting Using Artificial Neural Networks and Particle Swarm Optimization
    Soto-Paz, Jonathan
    Alfonso-Morales, Wilfredo
    Caicedo-Bravo, Eduardo
    Oviedo-Ocana, Edgar Ricardo
    Torres-Lozada, Patricia
    Manyoma, Pablo Cesar
    Sanchez, Antoni
    Komilis, Dimitrios
    [J]. WASTE AND BIOMASS VALORIZATION, 2020, 11 (08) : 3937 - 3951
  • [23] Fitness and Diversity Guided Particle Swarm Optimization for Global Optimization and Training Artificial Neural Networks
    Zhang, Xueyan
    Li, Lin
    Zhang, Yuzhu
    Yang, Guocai
    [J]. PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON PROGRESS IN INFORMATICS AND COMPUTING (PIC), VOL 1, 2016, : 74 - 81
  • [24] An improved approximation approach incorporating particle swarm optimization and a priori information into neural networks
    Han, Fei
    Ling, Qing-Hua
    Huang, De-Shuang
    [J]. NEURAL COMPUTING & APPLICATIONS, 2010, 19 (02): : 255 - 261
  • [25] An improved approximation approach incorporating particle swarm optimization and a priori information into neural networks
    Fei Han
    Qing-Hua Ling
    De-Shuang Huang
    [J]. Neural Computing and Applications, 2010, 19 : 255 - 261
  • [26] A hybrid Particle Swarm Optimization algorithm for function optimization
    Sevkli, Zulal
    Sevilgen, F. Erdogan
    [J]. APPLICATIONS OF EVOLUTIONARY COMPUTING, PROCEEDINGS, 2008, 4974 : 585 - +
  • [27] A Hybrid Particle Swarm Algorithm for Function Optimization
    Yang, Jie
    Xie, Jiahua
    [J]. PROCEEDINGS OF THE 2009 2ND INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS, VOLS 1-4, 2009, : 2120 - 2123
  • [28] An Analysis of Activation Function Saturation in Particle Swarm Optimization Trained Neural Networks
    Dennis, Cody
    Engelbrecht, Andries P.
    Ombuki-Berman, Beatrice M.
    [J]. NEURAL PROCESSING LETTERS, 2020, 52 (02) : 1123 - 1153
  • [29] An Analysis of Activation Function Saturation in Particle Swarm Optimization Trained Neural Networks
    Cody Dennis
    Andries P. Engelbrecht
    Beatrice M. Ombuki-Berman
    [J]. Neural Processing Letters, 2020, 52 : 1123 - 1153
  • [30] The Modified Particle Swarm Optimization for the design of the Beta Basis Function Neural Networks
    Dhahri, H.
    Alimi, Adel. M.
    Karray, F.
    [J]. 2008 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8, 2008, : 3874 - 3880