Moving mesh finite element methods based on harmonic maps

被引:0
|
作者
Li, R [1 ]
Liu, WB [1 ]
Tang, T [1 ]
Zhang, PW [1 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
来源
关键词
finite element method; mesh adaptivity; harmonic map; variational inequality; optimal control; A posteriori error estimates;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the applications of a class of moving mesh finite element methods based on harmonic maps. We review some recent work of the authors on solving PDES, variational inequalities and optimal control problems by use of the moving mesh techniques.
引用
收藏
页码:143 / 156
页数:14
相关论文
共 50 条
  • [41] New locally conservative finite element methods on a rectangular mesh
    Jeon, Youngmok
    Park, Eun-Jae
    NUMERISCHE MATHEMATIK, 2013, 123 (01) : 97 - 119
  • [42] A Novel Meshing Method Based on Adaptive Size Function and Moving Mesh for Electromagnetic Finite Element Analysis
    Zhang, Chunfeng
    An, Siguang
    Wang, Wei
    Lin, Dehui
    SYMMETRY-BASEL, 2021, 13 (02): : 1 - 16
  • [43] On the mesh insensitivity of the edge-based smoothed finite element method for moving-domain problems
    He, Tao
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2025, 440
  • [44] Finite Element Method of BBM-Burgers Equation with Dissipative Term Based on Adaptive Moving Mesh
    Lu, Changna
    Gao, Qianqian
    Fu, Chen
    Yang, Hongwei
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2017, 2017
  • [45] Adaptive finite element mesh refinement using self-organizing maps
    Kim, YJ
    Ghaboussi, J
    STRUCTURAL ENGINEERING AND MECHANICS, VOLS 1 AND 2, 1999, : 167 - 172
  • [46] Moving mesh methods for singular problems on a sphere using perturbed harmonic mappings
    Di, Yana
    Li, Ruo
    Tang, Tao
    Zhang, Pingwen
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 28 (04): : 1490 - 1508
  • [47] Moving curved mesh adaptation for higher-order finite element simulations
    Luo, Xiao-Juan
    Shephard, Mark S.
    Lee, Lie-Quan
    Ge, Lixin
    Ng, Cho
    ENGINEERING WITH COMPUTERS, 2011, 27 (01) : 41 - 50
  • [48] Mixed finite element method with moving mesh for unsaturated soil seepage problem
    School of Sciences, Tianjin University, Tianjin 300072, China
    不详
    不详
    Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban), 2007, 10 (1183-1188):
  • [49] Finite element moving mesh analysis of phase change problems with natural convection
    Tenchev, RT
    Mackenzie, JA
    Scanlon, TJ
    Stickland, MT
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2005, 26 (04) : 597 - 612
  • [50] An Adaptive Moving Mesh Finite Element Solution of the Regularized Long Wave Equation
    Changna Lu
    Weizhang Huang
    Jianxian Qiu
    Journal of Scientific Computing, 2018, 74 : 122 - 144