Moving mesh finite element methods based on harmonic maps

被引:0
|
作者
Li, R [1 ]
Liu, WB [1 ]
Tang, T [1 ]
Zhang, PW [1 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
来源
关键词
finite element method; mesh adaptivity; harmonic map; variational inequality; optimal control; A posteriori error estimates;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the applications of a class of moving mesh finite element methods based on harmonic maps. We review some recent work of the authors on solving PDES, variational inequalities and optimal control problems by use of the moving mesh techniques.
引用
收藏
页码:143 / 156
页数:14
相关论文
共 50 条
  • [31] Stability and convergence of finite-element approximation schemes for harmonic maps
    Bartels, S
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (01) : 220 - 238
  • [32] Efficient conformal tetrahedral finite element mesh generation for moving objects with contact by mesh adaptation
    Maehama, Hiroki
    Date, Hiroaki
    Kanai, Satoshi
    JOURNAL OF ADVANCED MECHANICAL DESIGN SYSTEMS AND MANUFACTURING, 2017, 11 (04):
  • [33] TEMPERATURE FIELD DUE TO A MOVING HEAT SOURCE: A MOVING MESH FINITE ELEMENT ANALYSIS.
    Kuang, Z-B.
    Atluri, S.N.
    1600, (52):
  • [34] Anisotropic mesh adaptation for finite volume and finite element methods on triangular meshes
    Dolejší, Vít
    Computing and Visualization in Science, 1998, 1 (03): : 165 - 178
  • [35] A posteriori error estimation and mesh adaptivity for finite volume and finite element methods
    Barth, TJ
    ADAPTIVE MESH REFINEMENT - THEORY AND APPLICATIONS, 2005, 41 : 183 - 202
  • [36] Semiautomated finite element mesh generation methods for a long bone
    Pfeiler, T. W.
    Lalush, D. S.
    Loboa, E. G.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2007, 85 (03) : 196 - 202
  • [37] Anisotropic variational mesh adaptation for embedded finite element methods
    Rahmani, Saman
    Baiges, Joan
    Principe, Javier
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2025, 433
  • [38] New locally conservative finite element methods on a rectangular mesh
    Youngmok Jeon
    Eun-Jae Park
    Numerische Mathematik, 2013, 123 : 97 - 119
  • [39] A High Quality Mesh Scheme for Adaptive Finite Element Methods
    Wang Bing
    Qin Hengfeng
    2013 32ND CHINESE CONTROL CONFERENCE (CCC), 2013, : 2917 - 2921
  • [40] FINITE-ELEMENT MESH GENERATION METHODS - A REVIEW AND CLASSIFICATION
    HOLE, K
    COMPUTER-AIDED DESIGN, 1988, 20 (01) : 27 - 38