Effects of receiver parameters on the wireless power transfer system via magnetic resonance coupling

被引:0
|
作者
Shi, Xinzhi [1 ]
Qi, Chang [1 ]
Qu, Meiling [1 ]
Ye, Shuangli [1 ]
机构
[1] Wuhan Univ, Sch Elect & Informat, Wuhan 430079, Hubei, Peoples R China
基金
美国国家科学基金会;
关键词
Wireless power transfer; magnetic resonance coupling; four coils; receiver parameter; efficiency; RESONATORS;
D O I
10.1080/08327823.2016.1157319
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The wireless system with four-coil resonators is a popular configuration for mid-range wireless power transfer via magnetic resonance coupling. It has broad range of applications. But it is difficult to make the parameters of receiver ( including receiving coil and load coil) to be consistent with the parameters of transmitter ( including driving coil and transmitting coil) in different application environments. The parameters of receiving coil and load coil have strong impacts on efficiency of the wireless power transfer system. In this work, a comprehensive study on effects of receiver ( including receiving coil and load coil) parameters, such as coils radius, wire radius, number of turns and length of coil, is conducted. Some important observations on the effects of the receiver parameters are drawn based on theoretical studies and PSPICE simulation, which are also verified by experiments. It is shown that the radius of receiver has more significant impacts on the power transfer efficiency than other parameters.
引用
收藏
页码:3 / 18
页数:16
相关论文
共 50 条
  • [41] Efficiency Analysis and Optimization for Multiple-Receiver Magnetic Coupling Resonant Wireless Power Transfer System
    Lin, Honggao
    Li, Li
    2020 5TH INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION SYSTEMS (ICCCS 2020), 2020, : 742 - 747
  • [42] Idle Power Loss Suppression in Magnetic Resonance Coupling Wireless Power Transfer
    Badowich, Connor
    Markley, Loic
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2018, 65 (11) : 8605 - 8612
  • [43] Antenna Structures for Wireless Power Transfer via Resonance Magnetic
    Jonah, Olutola
    Georgakopoulos, Stavros V.
    Hu, Hao
    2013 IEEE 14TH ANNUAL WIRELESS AND MICROWAVE TECHNOLOGY CONFERENCE (WAMICON), 2013,
  • [44] Long Range Wireless Power Transfer via Magnetic Resonance
    Khan, Ijhar
    Qureshi, Muhammad Ibrahim
    Rehman, Mutee Ur
    Khan, Wasif Tanveer
    2017 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM - FALL (PIERS - FALL), 2017, : 3079 - 3085
  • [45] Impedance Matching and Power Division Algorithm Considering Cross Coupling for Wireless Power Transfer via Magnetic Resonance
    Ean, Koh Kim
    Chuan, Beh Teck
    Imura, Takehiro
    Hori, Yoichi
    2012 IEEE 34TH INTERNATIONAL TELECOMMUNICATIONS ENERGY CONFERENCE (INTELEC), 2012,
  • [46] Impact of Receiver Power and Coupling Coefficient on Resonant Frequency in Wireless Power Transfer System
    Vinko, Davor
    Biondic, Ivan
    Bilandzija, Domagoj
    2019 61ST INTERNATIONAL SYMPOSIUM ELMAR, 2019, : 207 - 210
  • [47] Research on Quality Factor of the Coils in Wireless Power Transfer System Based on Magnetic Coupling Resonance
    Li Jinliang
    Deng Qijun
    Hu Wenshan
    Zhou Hong
    2017 IEEE PELS WORKSHOP ON EMERGING TECHNOLOGIES - WIRELESS POWER TRANSFER (WOW), 2017, : 123 - 127
  • [48] Research on Wireless Power Transfer System of Automated Guided Vehicle Based on Magnetic Coupling Resonance
    Hao, Yanbiao
    Wang, Jianqiang
    Liu, Yue
    2019 22ND INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS (ICEMS 2019), 2019, : 1140 - 1143
  • [49] Efficient Wireless Power Transfer via Magnetic Resonance Coupling Using Automated Impedance Matching Circuit
    Ali, Esraa Mousa
    Alibakhshikenari, Mohammad
    Virdee, Bal S.
    Soruri, Mohammad
    Limiti, Ernesto
    ELECTRONICS, 2021, 10 (22)
  • [50] Transmission Characteristic Research on Multi-loads Wireless Power Transfer via Magnetic Coupling Resonance
    Li J.
    Wang Y.
    Yang T.
    Ma Q.
    Wang Y.
    Dianwang Jishu/Power System Technology, 2021, 45 (02): : 722 - 729