Effects of receiver parameters on the wireless power transfer system via magnetic resonance coupling

被引:0
|
作者
Shi, Xinzhi [1 ]
Qi, Chang [1 ]
Qu, Meiling [1 ]
Ye, Shuangli [1 ]
机构
[1] Wuhan Univ, Sch Elect & Informat, Wuhan 430079, Hubei, Peoples R China
基金
美国国家科学基金会;
关键词
Wireless power transfer; magnetic resonance coupling; four coils; receiver parameter; efficiency; RESONATORS;
D O I
10.1080/08327823.2016.1157319
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The wireless system with four-coil resonators is a popular configuration for mid-range wireless power transfer via magnetic resonance coupling. It has broad range of applications. But it is difficult to make the parameters of receiver ( including receiving coil and load coil) to be consistent with the parameters of transmitter ( including driving coil and transmitting coil) in different application environments. The parameters of receiving coil and load coil have strong impacts on efficiency of the wireless power transfer system. In this work, a comprehensive study on effects of receiver ( including receiving coil and load coil) parameters, such as coils radius, wire radius, number of turns and length of coil, is conducted. Some important observations on the effects of the receiver parameters are drawn based on theoretical studies and PSPICE simulation, which are also verified by experiments. It is shown that the radius of receiver has more significant impacts on the power transfer efficiency than other parameters.
引用
收藏
页码:3 / 18
页数:16
相关论文
共 50 条
  • [21] Research on Tradeoff between Power and Efficiency of Wireless Power Transfer via Magnetic Resonance Coupling
    Gao, Tian
    Wang, Xin
    Jiang, Linrui
    Hou, Jing
    Yang, Yan
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2021, 16 (03) : 1427 - 1435
  • [22] Research on Tradeoff between Power and Efficiency of Wireless Power Transfer via Magnetic Resonance Coupling
    Tian Gao
    Xin Wang
    Linrui Jiang
    Jing Hou
    Yan Yang
    Journal of Electrical Engineering & Technology, 2021, 16 : 1427 - 1435
  • [24] Multi-receiver and Repeater Wireless Power Transfer via Magnetic Resonance Coupling - Impedance Matching and Power Division Utilizing Impedance Inverter
    Koh, K. E.
    Beh, T. C.
    Imura, T.
    Hori, Y.
    2012 15TH INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS (ICEMS 2012), 2012,
  • [25] Coupling Coefficients Estimation of Wireless Power Transfer System via Magnetic Resonance Coupling Using Information From Either Side of the System
    Jiwariyavej, Vissuta
    Imura, Takehiro
    Hori, Yoichi
    IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS, 2015, 3 (01) : 191 - 200
  • [26] Simulation study on Series Model of Wireless Power Transfer via Magnetic Resonance Coupling
    Liu, Yang
    Fan, Jiaqi
    Zuo, Tongbin
    Zhang, Yuchun
    Dong, Liang
    Liu, Jun
    2017 IEEE 3RD INFORMATION TECHNOLOGY AND MECHATRONICS ENGINEERING CONFERENCE (ITOEC), 2017, : 191 - 195
  • [27] Selective Omnidirectional Magnetic Resonant Coupling Wireless Power Transfer With Multiple-Receiver System
    Dai, Zhongyu
    Fang, Zhijian
    Huang, Hong
    He, Yuanjian
    Wang, Junhua
    IEEE ACCESS, 2018, 6 : 19287 - 19294
  • [28] Parameters Optimization for Magnetic Resonance Coupling Wireless Power Transmission
    Li, Changsheng
    Zhang, He
    Jiang, Xiaohua
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [29] Matching capacitance and transfer efficiency of four wireless power transfer systems via magnetic coupling resonance
    Xiao, Chunyan
    Wei, Kangzheng
    Liu, Fang
    Ma, Yangxiao
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2017, 45 (06) : 811 - 831
  • [30] Wireless Power Transfer via Electric Field Resonance Coupling
    Kusunoki, Masahiro
    Obara, Daiki
    Masuda, Mitsuru
    2014 ASIA-PACIFIC MICROWAVE CONFERENCE (APMC), 2014, : 1360 - 1362