An Improvement of Non-binary Code Correcting Single b-Burst of Insertions or Deletions

被引:0
|
作者
Saeki, Toyohiko [1 ]
Nozaki, Takayuki [1 ]
机构
[1] Yamaguchi Univ, Dept Informat, Yamaguchi, Japan
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper constructs a non-binary code correcting a single b-burst of insertions or deletions with a large cardinality. This paper also proposes a decoding algorithm of this code and evaluates a lower bound of the cardinality of this code. Moreover, we evaluate an asymptotic upper bound on the cardinality of codes which correct a single burst of insertions or deletions.
引用
收藏
页码:6 / 10
页数:5
相关论文
共 50 条
  • [21] SOME RESULTS ON ERROR-CORRECTING NON-BINARY CODES
    RAYCHAUDHURI, DK
    ANNALS OF MATHEMATICAL STATISTICS, 1960, 31 (02): : 536 - 536
  • [22] A Note on Non-Binary Multiple Insertion/Deletion Correcting Codes
    Paluncic, Filip
    Swart, Theo G.
    Weber, Jos H.
    Ferreira, Hendrik C.
    Clarke, Willem A.
    2011 IEEE INFORMATION THEORY WORKSHOP (ITW), 2011,
  • [23] bi-Byte correcting non-binary perfect codes
    Tyagi, Vinod
    Lata, Tarun
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2019, 11 (02)
  • [24] ECONOMIC-EVALUATION OF NON-BINARY ERROR-CORRECTING CODES
    JAHNKE, B
    ANGEWANDTE INFORMATIK, 1979, (07): : 303 - 312
  • [25] Non-binary Classical Error-correcting Codes for Quantum Communication
    Boyd, Christopher
    Pitaval, Renaud-Alexandre
    Parts, Ulo
    Tirkkonen, Olav
    2015 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2015, : 4060 - 4065
  • [26] New Multiple Insertion/Deletion Correcting Codes for Non-Binary Alphabets
    Le, Tuan A.
    Nguyen, Hieu D.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (05) : 2682 - 2693
  • [27] Restricted bi-byte correcting non-binary optimal codes
    Tyagi, Vinod
    Lata, Tarun
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2019, 11 (02)
  • [28] CONSTRUCTION OF m-REPEATED BURST ERROR CORRECTING BINARY LINEAR CODE
    Dass, B. K.
    Verma, Rashmi
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2012, 4 (03)
  • [29] An Improvement of the Asymptotic Elias Bound for Non-Binary Codes
    Kaipa, Krishna
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (07) : 5170 - 5178
  • [30] Non-Binary LDPC Code Design for the Poisson PPM Channel
    Matuz, Balazs
    Paolini, Enrico
    Zabini, Flavio
    Liva, Gianluigi
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2017, 65 (11) : 4600 - 4611