New Multiple Insertion/Deletion Correcting Codes for Non-Binary Alphabets

被引:14
|
作者
Le, Tuan A. [1 ]
Nguyen, Hieu D. [1 ]
机构
[1] Rowan Univ, Dept Math, Glassboro, NJ 08012 USA
关键词
Coding theory; insertion/deletion codes; INSERTIONS; DELETIONS;
D O I
10.1109/TIT.2016.2541139
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We generalize Helberg's number-theoretic construction of binary multiple insertion/deletion correcting codes to non-binary alphabets and describe a linear decoding algorithm for correcting multiple deletions.
引用
收藏
页码:2682 / 2693
页数:12
相关论文
共 50 条
  • [1] A Note on Non-Binary Multiple Insertion/Deletion Correcting Codes
    Paluncic, Filip
    Swart, Theo G.
    Weber, Jos H.
    Ferreira, Hendrik C.
    Clarke, Willem A.
    [J]. 2011 IEEE INFORMATION THEORY WORKSHOP (ITW), 2011,
  • [2] Non-Binary Two-Deletion Correcting Codes and Burst-Deletion Correcting Codes
    Song, Wentu
    Cai, Kui
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (10) : 6470 - 6484
  • [3] On multiple insertion/deletion correcting codes
    Swart, TG
    Ferreira, HC
    [J]. 2000 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2000, : 6 - 6
  • [4] On multiple insertion/deletion correcting codes
    Helberg, ASJ
    Ferreira, HC
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (01) : 305 - 308
  • [5] Constructing Polar Codes for Non-Binary Alphabets and MACs
    Tal, Ido
    Sharov, Artyom
    Vardy, Alexander
    [J]. 2012 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2012,
  • [6] BINARY CODES FOR CORRECTING DELETION INSERTION AND SUBSTITUTION ERRORS
    LEVENSHT.VI
    [J]. DOKLADY AKADEMII NAUK SSSR, 1965, 163 (04): : 845 - &
  • [7] An Improvement of Non-Binary Single b-Burst of Insertion/Deletion Correcting Code
    Saeki, Toyohiko
    Nozaki, Takayuki
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2019, E102A (12) : 1591 - 1599
  • [8] SOME RESULTS ON ERROR-CORRECTING NON-BINARY CODES
    RAYCHAUDHURI, DK
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1960, 31 (02): : 536 - 536
  • [9] Non-binary Codes for Correcting a Burst of at Most 2 Deletions
    Wang, Shuche
    Sima, Jin
    Farnoud, Farzad
    [J]. 2021 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2021, : 2804 - 2809
  • [10] bi-Byte correcting non-binary perfect codes
    Tyagi, Vinod
    Lata, Tarun
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2019, 11 (02)