共 50 条
Enhancement of Neural Stem Cell Proliferation in Rats with Spinal Cord Injury by a Combination of Repetitive Transcranial Magnetic Stimulation (rTMS) and Human Umbilical Cord Blood Mesenchymal Stem Cells (hUCB-MSCs)
被引:13
|作者:
Guo, Mengguo
[1
]
Wu, Lixin
[1
]
Song, Zhenyu
[1
]
Yang, Bo
[1
]
机构:
[1] Zhengzhou Univ, Affliated Hosp 1, Dept Neurosurg, Zhengzhou, Henan, Peoples R China
来源:
关键词:
Mesenchymal Stromal Cells;
Spinal Cord Injuries;
Transcranial Magnetic Stimulation;
MULTILINEAGE DIFFERENTIATION;
FUNCTIONAL RECOVERY;
REGENERATION;
PATHWAY;
TISSUE;
D O I:
10.12659/MSM.924445
中图分类号:
R-3 [医学研究方法];
R3 [基础医学];
学科分类号:
1001 ;
摘要:
Background: This study was designed to explore the combined effects of repetitive transcranial magnetic stimulation (rTMS) and human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) transplantation on neural stem cell proliferation in rats with spinal cord injury (SCI). Material/Methods: SCI was induced in 90 rats by laminectomy at T10. Fifteen rats each were treated with 0.5 Hz rTMS or 10 Hz rTMS or underwent hUCB-MSC transplantation; 15 each were treated with 0.5 Hz rTMS+hUCB-MSCs or 10 Hz rTMS+hUCB-MSCs; and 15 were untreated (control group). The Basso, Beattie, and Bresnahan (BBB) scores and motor evoked potentials (MEPs) were measured, and all rats underwent biotin dextran-amine (BDA) tracing of the corticospinal tract (CST). The levels of expression of neural stem cell proliferation related proteins, including BrdU, nestin, Tuj1, Ng2+ and GFAP, were measured, and the levels of bFGF and EGF determined by Western blotting. Results: BBB scores and MEPs were increased after rTMS and hUCB-MSC transplantation, while histologically determined SCI-induced neuron apoptosis was attenuated. The numbers of BDA-positive fibers and Brdu-, nestinand Tuj1-positive cells were markedly increased and the numbers of Ng2+- and GFAP-positive cells were markedly decreased following treatment with rTMS alone or rTMS plus hUCB-MSC transplantation. The levels of expression of bFGF and EGF were significantly upregulated following rTMS treatment and hUCB-MSC transplantation. Higher performance was observed after combined treatment with rTMS and hUCB-MSC transplantation than after either alone. Conclusions: The combination of rTMS treatment and hUCB-MSC transplantation could attenuate SCI-induced neural stem cell apoptosis and motor dysfunction in rats.
引用
收藏
页数:8
相关论文