L1→Lq Poincare inequalities for 0 < q < 1 imply representation formulas

被引:6
|
作者
Lu, GZ [1 ]
Carlos, P
机构
[1] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
[2] Univ Autonoma Madrid, Dept Matemat, Madrid 28049, Spain
基金
美国国家科学基金会;
关键词
sobolev spaces; representation formulas; high-order derivatives; vector fields; metric spaces; polynomials; doubling measures; Poincare inequalities;
D O I
10.1007/s101140100154
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given two doubling measures p and v in a metric space (S, p) of homogeneous type, let B-0 subset of S be a given ball. It has been a well-known result by now (see [1-4]) that the validity of an L-1 --> L-1 Poincare inequality of the following form: integral(B)\f - f(B)\dnu less than or equal to cr(B) integral(B)gdmu, for all metric balls B subset of B-0 subset of S, implies a variant of representation formula of fractional intergral type: for nu-a.e. x is an element of B-0, \f(x) - f(B0)\ less than or equal to C integral(B0) g(y) (rho(x,y))/(mu(B(x,rho(x,y)))) dmu(y) + C-r(B0)/(mu(B0)) integral(B0) g(y) dmu(y). One of the main results of this paper shows that an L-1 to L-q Poincare inequality for some 0 < q < 1, i.e., (integral(B) \f - f(B)\(q) dnu)(1/q) less than or equal to cr(B) integral(B) gdmu, for all metric balls B subset of B-0, will suffice to imply the above representation formula. As an immediate corollary, we can show that the weak-type condition, sup(lambda>0) (lambdanu({x is an element of B : \f(x) - fB\ > lambda}))/(nu(B) less than or equal to Cr(B)) integral(B) g dmu, also implies the same formula. Analogous theorems related to high-order Poincare inequalities and Sobulev spaces in metric spaces are also proved.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [41] Characterization of the Matrix Class (lα, lβ), 0 &lt; α ≤ β ≤ 1
    Natarajan, P. N.
    FILOMAT, 2021, 35 (13) : 4451 - 4457
  • [42] Bandgap engineering of Cd1-xZnxTe1-ySey(0 &lt; x &lt;0.27, 0 &lt; y &lt; 0.026)
    Park, Beomjun
    Kim, Yonghoon
    Seo, Jiwon
    Byun, Jangwon
    Dedic, V.
    Franc, J.
    Bolotnikov, A. E.
    James, Ralph B.
    Kim, Kihyun
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2022, 1036
  • [43] Sparse K-Means with the lq(0 ≤ q &lt; 1) Constraint for High-Dimensional Data Clustering
    Wang, Yu
    Chang, Xiangyu
    Li, Rongjian
    Xu, Zongben
    2013 IEEE 13TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2013, : 797 - 806
  • [44] Combining Stability and Robustness in Reconstruction Problems via lq (0 &lt; q ≤ 1) Quasinorm Using Compressive Sensing
    Nguyen, Thu L. N.
    Shin, Yoan
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2014, E97A (03) : 894 - 898
  • [45] THE SPECTRUM OF q-CESARO MATRICES ON c AND ITS VARIOUS SPECTRAL DECOMPOSITION FOR 0 &lt; q &lt; 1
    Durna, Nuh
    Turkay, Merve Esra
    OPERATORS AND MATRICES, 2021, 15 (03): : 795 - 813
  • [46] On translation and dilation invariant subspaces of L p (ℝn), 0 &lt; p &lt; 1
    Aleksandrov A.B.
    Journal of Mathematical Sciences, 2008, 148 (6) : 785 - 794
  • [47] Isometries on the quasi-Banach spaces L p (0 &lt; p &lt; 1)
    Li, Lei
    Ren, Wei Yun
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2010, 26 (08) : 1519 - 1524
  • [48] Multivariate Bernstein inequalities for entire functions of exponential type in Lp(Rn) (0 &lt; p &lt; 1)
    Ha Huy Bang
    Vu Nhat Huy
    Rim, Kyung Soo
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (01):
  • [49] TheSpacesbpwith0&lt;p&lt;1
    HU Zhangjian LIU TaishunDepartment of Mathematics University of Science and Technology of China Hefei ChinaDepartment of Mathematics Huzhou Teachers College Huzhou China
    数学季刊, 2004, (04) : 331 - 337
  • [50] THE CONVERGENCE OF q-BERNSTEIN POLYNOMIALS (0 &lt; q &lt; 1) AND LIMIT q-BERNSTEIN OPERATORS IN COMPLEX DOMAINS
    Ostrovska, Sofiya
    Wang, Heping
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2009, 39 (04) : 1279 - 1291