L1→Lq Poincare inequalities for 0 < q < 1 imply representation formulas

被引:6
|
作者
Lu, GZ [1 ]
Carlos, P
机构
[1] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
[2] Univ Autonoma Madrid, Dept Matemat, Madrid 28049, Spain
基金
美国国家科学基金会;
关键词
sobolev spaces; representation formulas; high-order derivatives; vector fields; metric spaces; polynomials; doubling measures; Poincare inequalities;
D O I
10.1007/s101140100154
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given two doubling measures p and v in a metric space (S, p) of homogeneous type, let B-0 subset of S be a given ball. It has been a well-known result by now (see [1-4]) that the validity of an L-1 --> L-1 Poincare inequality of the following form: integral(B)\f - f(B)\dnu less than or equal to cr(B) integral(B)gdmu, for all metric balls B subset of B-0 subset of S, implies a variant of representation formula of fractional intergral type: for nu-a.e. x is an element of B-0, \f(x) - f(B0)\ less than or equal to C integral(B0) g(y) (rho(x,y))/(mu(B(x,rho(x,y)))) dmu(y) + C-r(B0)/(mu(B0)) integral(B0) g(y) dmu(y). One of the main results of this paper shows that an L-1 to L-q Poincare inequality for some 0 < q < 1, i.e., (integral(B) \f - f(B)\(q) dnu)(1/q) less than or equal to cr(B) integral(B) gdmu, for all metric balls B subset of B-0, will suffice to imply the above representation formula. As an immediate corollary, we can show that the weak-type condition, sup(lambda>0) (lambdanu({x is an element of B : \f(x) - fB\ > lambda}))/(nu(B) less than or equal to Cr(B)) integral(B) g dmu, also implies the same formula. Analogous theorems related to high-order Poincare inequalities and Sobulev spaces in metric spaces are also proved.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [31] The minimum perfect matching in pseudo-dimension 0 &lt; q &lt; 1
    Larsson, Joel
    COMBINATORICS PROBABILITY & COMPUTING, 2021, 30 (03): : 374 - 397
  • [32] Duality for logarithmic interpolation spaces when 0 &lt; q &lt; 1 and applications
    Besoy, Blanca F.
    Cobos, Fernando
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 466 (01) : 373 - 399
  • [33] The Lp dual Minkowski problem about 0 &lt; p &lt; 1 and q &gt; 0
    Lu, Fangxia
    Pu, Zhaonian
    OPEN MATHEMATICS, 2021, 19 (01): : 1648 - 1663
  • [34] The rate of convergence of q-Durrmeyer operators for 0&lt;q&lt;1
    Gupta, Vijay
    Heping, Wang
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2008, 31 (16) : 1946 - 1955
  • [35] Discrete Hardy's inequalities with 0 &lt; p ≤ 1
    Ho, Kwok-Pun
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2018, 30 (04) : 489 - 492
  • [36] On recovery of block-sparse signals via mixed l2/lq(0 &lt; q ≤ 1) norm minimization
    Wang, Yao
    Wang, Jianjun
    Xu, Zongben
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2013,
  • [37] Sparse recovery in probability via lq-minimization with Weibull random matrices for 0 &lt; q ≤ 1
    Gao, Yi
    Peng, Ji-gen
    Yue, Shi-gang
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2018, 33 (01) : 1 - 24
  • [38] Recovery Conditions in Weighted Sparse Phase Retrieval via Weighted lq(0 &lt; q ≤ 1) Minimization
    Huo, Haiye
    Xiao, Li
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2024, 43 (09) : 5878 - 5896
  • [39] Sparse signal recovery by accelerated q (0&lt;q&lt;1) thresholding algorithm
    Zhang, Yong
    Ye, Wan-Zhou
    Zhang, Jian-Jun
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2017, 94 (12) : 2481 - 2491
  • [40] AsymptoticallyIsometricCopyoflβ(0&lt;β&lt;1)inSpacesofBoundedLinearOperators
    Chen ZHIMei Mei SONG Department of MathematicsTianjin University of TechnologyTianjin PRChina
    数学研究与评论, 2011, 31 (03) : 562 - 566