L1→Lq Poincare inequalities for 0 < q < 1 imply representation formulas

被引:6
|
作者
Lu, GZ [1 ]
Carlos, P
机构
[1] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
[2] Univ Autonoma Madrid, Dept Matemat, Madrid 28049, Spain
基金
美国国家科学基金会;
关键词
sobolev spaces; representation formulas; high-order derivatives; vector fields; metric spaces; polynomials; doubling measures; Poincare inequalities;
D O I
10.1007/s101140100154
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given two doubling measures p and v in a metric space (S, p) of homogeneous type, let B-0 subset of S be a given ball. It has been a well-known result by now (see [1-4]) that the validity of an L-1 --> L-1 Poincare inequality of the following form: integral(B)\f - f(B)\dnu less than or equal to cr(B) integral(B)gdmu, for all metric balls B subset of B-0 subset of S, implies a variant of representation formula of fractional intergral type: for nu-a.e. x is an element of B-0, \f(x) - f(B0)\ less than or equal to C integral(B0) g(y) (rho(x,y))/(mu(B(x,rho(x,y)))) dmu(y) + C-r(B0)/(mu(B0)) integral(B0) g(y) dmu(y). One of the main results of this paper shows that an L-1 to L-q Poincare inequality for some 0 < q < 1, i.e., (integral(B) \f - f(B)\(q) dnu)(1/q) less than or equal to cr(B) integral(B) gdmu, for all metric balls B subset of B-0, will suffice to imply the above representation formula. As an immediate corollary, we can show that the weak-type condition, sup(lambda>0) (lambdanu({x is an element of B : \f(x) - fB\ > lambda}))/(nu(B) less than or equal to Cr(B)) integral(B) g dmu, also implies the same formula. Analogous theorems related to high-order Poincare inequalities and Sobulev spaces in metric spaces are also proved.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [1] L1→Lq Poincaré Inequalities for 0 < q < 1 Imply Representation Formulas
    Guo Zhen Lu
    Carlos Pérez
    Acta Mathematica Sinica, 2002, 18 : 1 - 20
  • [2] Operators from HP to lq for 0 &lt;p &lt;1&lt;q &lt;∞
    Blasco, Oscar
    Function Spaces, 2007, 435 : 81 - 87
  • [3] Uniqueness of the unconditional basis of l1 (lp) and lp(l1), 0 &lt; p &lt; 1
    Albiac, F
    Kalton, N
    Leránoz, C
    POSITIVITY, 2004, 8 (04) : 443 - 454
  • [4] Sparse Solutions by a Quadratically Constrained lq (0 &lt; q &lt; 1) Minimization Model
    Jiang, Shan
    Fang, Shu-Cherng
    Jin, Qingwei
    INFORMS JOURNAL ON COMPUTING, 2021, 33 (02) : 511 - 530
  • [5] l1 - lq (1 &lt; q ≤ 2) Minimization for One-Bit Compressed Sensing
    Lu, Yancheng
    Bi, Ning
    Wan, Anhua
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2024, 72 : 2649 - 2662
  • [6] L~1→L~q Poincare Inequalities for 0
    PEREZ Carlos
    Acta Mathematica Sinica,English Series, 2002, 18 (01) : 1 - 20
  • [7] CONVOLUTION INEQUALITIES IN WEIGHTED LORENTZ SPACES: CASE 0 &lt; q &lt; 1
    Krepela, Martin
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2017, 20 (01): : 191 - 201
  • [8] On Copson's inequalities for 0 &lt; p &lt; 1
    Gao, Peng
    Zhao, HuaYu
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01):
  • [9] Two-Weight Lp → Lq Bounds for Positive Dyadic Operators in the Case 0 &lt; q &lt; 1 ≤ p &lt; ∞
    Hanninen, Timo S.
    Verbitsky, Igor E.
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2020, 69 (03) : 837 - 871
  • [10] The space L1(Lp) is primary for 1 &lt; p &lt; ∞
    Lechner, Richard
    Motakis, Pavlos
    Mueller, Paul F. X.
    Schlumprecht, Thomas
    FORUM OF MATHEMATICS SIGMA, 2022, 10