Bearing fault detection and fault size estimation using fiber-optic sensors

被引:47
|
作者
Alian, Hasib [1 ]
Konforty, Shlomi [2 ]
Ben-Simon, Uri [3 ]
Klein, Renata [4 ]
Tur, Moshe [5 ]
Bortman, Jacob [2 ]
机构
[1] IAF, Tel Aviv, Israel
[2] Ben Gurion Univ Negev, Dept Mech Engn, PHM Lab, POB 653, IL-84105 Beer Sheva, Israel
[3] Israel Aerosp Ind, Lod, Israel
[4] RK Diagnost, POB 101, Gilon, Dn Misgav, Israel
[5] Tel Aviv Univ, Sch Elect Engn, IL-69978 Ramat Aviv, Israel
关键词
Spall size; Fault diagnosis; Rolling element bearing; Fiber; Bragg grating; PROGNOSTICS;
D O I
10.1016/j.ymssp.2018.10.035
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Health monitoring of rotating machinery is commonly based on vibration signals. Instead, this pioneering research provides bearing diagnostics using strain measurements, obtained from Fiber Bragg Grating (FBG) fiber-optic sensors. Besides detection of the damage via spectral data, these optical sensors also allow the estimation of damage severity through the direct and accurate measurement of the damage size of small spalls in the bearing races, an essential capability for the prognosis of remaining useful life. FBG sensors are small and can be easily placed in the immediate proximity of the bearing or even embedded inside it, thereby ensuring much enhanced signal-to-noise ratio through the minimizing transmission path effects from remote disturbances. These ball-bearing related diagnostic capabilities of FBG sensors are demonstrated via seeded tests, as well as by means of extended monitoring of bearings during fatigue endurance tests. Sensitivity to FBG sensor location is studied, showing acceptable values at all housing measuring points around the bearing. Fiber-optic sensors appear to have promising diagnostic potential for spall-like faults in both the outer and inner races of ball bearings with a very good discrimination power. (C) 2018 Elsevier Ltd. All rights reserved.
引用
下载
收藏
页码:392 / 407
页数:16
相关论文
共 50 条
  • [41] Hybrid Plasmonic Fiber-Optic Sensors
    Qi, Miao
    Zhang, Nancy Meng Ying
    Li, Kaiwei
    Tjin, Swee Chuan
    Wei, Lei
    SENSORS, 2020, 20 (11) : 1 - 27
  • [42] Fiber-optic chemical sensors and biosensors
    Wolfbeis, OS
    ANALYTICAL CHEMISTRY, 2002, 74 (12) : 2663 - 2677
  • [43] Stretchable distributed fiber-optic sensors
    Bai, Hedan
    Li, Shuo
    Barreiros, Jose
    Tu, Yaqi
    Pollock, Clifford R.
    Shepherd, Robert F.
    SCIENCE, 2020, 370 (6518) : 848 - +
  • [44] Fiber-optic chemical sensors and biosensors
    Wolfbeis, Otto S.
    ANALYTICAL CHEMISTRY, 2006, 78 (12) : 3859 - 3873
  • [45] Smart bridges with fiber-optic sensors
    Watkins, SE
    IEEE INSTRUMENTATION & MEASUREMENT MAGAZINE, 2003, 6 (02) : 25 - 30
  • [46] Broadband Fiber-Optic Acoustic Sensors
    Wei, Heming
    Gong, Zhe
    Wu, Wenjing
    Che, Jiawei
    Zhang, Liang
    Pang, Fufei
    Wang, Tingyun
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2022, 40 (12) : 4033 - 4041
  • [47] Fiber-optic array sensors.
    Pantano, P
    Panova, AA
    Walt, DR
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1998, 215 : U608 - U608
  • [48] Fiber-Optic Microstructure Sensors: A Review
    Rani, Zengling
    He, Xiu
    Rao, Yunjiang
    Sun, Dong
    Qin, Xiaojuan
    Zeng, Debiao
    Chu, Wangwei
    Li, Xiankun
    Wei, Yabin
    PHOTONIC SENSORS, 2021, 11 (02) : 227 - 261
  • [49] Fiber-optic chemical sensors and biosensors
    Wolfbeis, Otto S.
    ANALYTICAL CHEMISTRY, 2008, 80 (12) : 4269 - 4283
  • [50] Fiber-optic coupler sensors for biosensing
    Tazawa, Hidehisa
    Kanie, Tomohiko
    Katayama, Makoto
    SEI Technical Review, 2007, (65): : 67 - 70