TOPOGRAPHIC CORRECTION USING BRIGHTNESS NORMALIZATION APPROACH FROM HYPERSPECTRAL REMOTE SENSING IMAGES

被引:0
|
作者
Pal, M. K. [1 ]
Porwal, A. [1 ]
机构
[1] Indian Inst Technol, Ctr Studies Resources Engn, Bombay 400076, Maharashtra, India
来源
2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2017年
关键词
remote sensing; hyperspectral; Hyperion; topographic correction; brightness normalization; SATELLITE IMAGERY; VEGETATION;
D O I
暂无
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In this paper, we have developed a radiometric brightness normalization based approach by using digital elevation data and local statistics for topographic correction from hyperspectral remote sensing images. Previous approaches for calibration and removal of topographic illumination effect from Hyperspectral and other remotely sensed datasets are reviewed and tested along with the proposed algorithm on a Hyperion image of a study area in Western India. The results indicate that the proposed algorithm is effective in topographic correction.
引用
收藏
页码:5658 / 5661
页数:4
相关论文
共 50 条
  • [41] Color correction for remote sensing images based on remote sensing camera model
    Wang, XJ
    Zhang, H
    Wei, ZH
    Hao, ZH
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2002, 21 (06) : 443 - 446
  • [42] A statistical approach for topographic correction of satellite images by using spatial context information
    Gu, DG
    Gillespie, AR
    Adams, JB
    Weeks, R
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1999, 37 (01): : 236 - 246
  • [43] Topographic correction approach for radiation of RS images by using spatial context information
    National Laboratory for Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China
    Cehui Xuebao, 2006, 3 (285-290):
  • [44] Statistical approach for topographic correction of satellite images by using spatial context information
    Gu, Degui
    Gillespie, Alan R.
    Adams, John B.
    Weeks, Robin
    IEEE Transactions on Geoscience and Remote Sensing, 1999, 37 (1 pt 1): : 236 - 246
  • [45] A SHADOW DETECTION METHOD FOR REMOTE SENSING IMAGES USING VHR HYPERSPECTRAL AND LIDAR DATA
    Tolt, G.
    Shimoni, M.
    Ahlberg, J.
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 4423 - 4426
  • [46] A Tool for Analysis of Spectral Indices for Remote Sensing of Vegetation and Crops Using Hyperspectral Images
    Ruiz, D. A.
    Bacca, E. B.
    Caicedo, E. F.
    ENTRE CIENCIA E INGENIERIA, 2019, 13 (26): : 51 - 58
  • [47] TEXTURE AND SHAPE FEATURES FOR GRASS WEED CLASSIFICATION USING HYPERSPECTRAL REMOTE SENSING IMAGES
    Farooq, Adnan
    Jia, Xiuping
    Zhou, Jun
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 7208 - 7211
  • [48] Enhancements of target detection using atmospheric correction preprocessing techniques in hyperspectral remote sensing
    Yuen, PWT
    Bishop, G
    MILITARY REMOTE SENSING, 2004, 5613 : 111 - 118
  • [49] Optimized Lithological Mapping from Multispectral and Hyperspectral Remote Sensing Images Using Fused Multi-Classifiers
    Pal, Mahendra
    Rasmussen, Thorkild
    Porwal, Alok
    REMOTE SENSING, 2020, 12 (01)
  • [50] Classification of hyperspectral remote sensing images with support vector machines
    Melgani, F
    Bruzzone, L
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2004, 42 (08): : 1778 - 1790