Machine-Learning Prediction of Tumor Antigen Immunogenicity in the Selection of Therapeutic Epitopes

被引:45
|
作者
Smith, Christof C. [1 ,2 ]
Chai, Shengjie [2 ,3 ]
Washington, Amber R. [2 ]
Lee, Samuel J. [2 ]
Landoni, Elisa [2 ]
Field, Kevin [2 ]
Garness, Jason [2 ]
Bixby, Lisa M. [2 ]
Selitsky, Sara R. [2 ,4 ,5 ]
Parker, Joel S. [2 ,4 ,5 ]
Savoldo, Barbara [2 ,6 ]
Serody, Jonathan S. [1 ,2 ,7 ]
Vincent, Benjamin G. [1 ,2 ,3 ,7 ,8 ]
机构
[1] UNC Sch Med, Dept Microbiol & Immunol, Chapel Hill, NC USA
[2] Univ North Carolina Chapel Hill, Lineberger Comprehens Canc Ctr, CB 7295, Chapel Hill, NC 27599 USA
[3] UNC Sch Med, Curriculum Bioinformat & Computat Biol, Chapel Hill, NC USA
[4] Univ North Carolina Chapel Hill, Lineberger Bioinformat Core, Lineberger Comprehens Canc Ctr, Chapel Hill, NC USA
[5] Univ North Carolina Chapel Hill, Dept Genet, Chapel Hill, NC USA
[6] UNC Sch Med, Dept Pediat, Chapel Hill, NC USA
[7] UNC Sch Med, Dept Med, Div Hematol Oncol, Chapel Hill, NC USA
[8] UNC Sch Med, Computat Med Program, Chapel Hill, NC USA
关键词
RNA-SEQ; INITIATION CODON; T-LYMPHOCYTES; CELLS; BINDING; RECONSTRUCTION; IDENTIFICATION; NEOANTIGENS; EXPRESSION; MUTATIONS;
D O I
10.1158/2326-6066.CIR-19-0155
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Current tumor neoantigen calling algorithms primarily rely on epitope/major histocompatibility complex (MHC) binding affinity predictions to rank and select for potential epitope targets. These algorithms do not predict for epitope immunogenicity using approaches modeled from tumor-specific antigen data. Here, we describe peptide-intrinsic biochemical features associated with neoantigen and minor histocompatibility mismatch antigen immunogenicity and present a gradient boosting algorithm for predicting tumor antigen immunogenicity. This algorithm was validated in two murine tumor models and demonstrated the capacity to select for therapeutically active antigens. Immune correlates of neoantigen immunogenicity were studied in a pan-cancer data set from The Cancer Genome Atlas and demonstrated an association between expression of immunogenic neoantigens and immunity in colon and lung adenocarcinomas. Lastly, we present evidence for expression of an out-of-frame neoantigen that was capable of driving antitumor cytotoxic T-cell responses. With the growing clinical importance of tumor vaccine therapies, our approach may allow for better selection of therapeutically relevant tumor-specific antigens, including nonclassic out-of-frame antigens capable of driving antitumor immunity.
引用
收藏
页码:1591 / 1604
页数:14
相关论文
共 50 条
  • [1] Machine-Learning Aided Peer Prediction
    Liu, Yang
    Chen, Yiling
    EC'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON ECONOMICS AND COMPUTATION, 2017, : 63 - 80
  • [2] Prediction of cholinergic compounds by machine-learning
    Wijeyesakere S.J.
    Wilson D.M.
    Sue Marty M.
    Wilson, Daniel M. (MWilson3@dow.com), 1600, Elsevier B.V. (13):
  • [3] Optimizing machine-learning models for mutagenicity prediction through better feature selection
    Shinada, Nicolas K.
    Koyama, Naoki
    Ikemori, Megumi
    Nishioka, Tomoki
    Hitaoka, Seiji
    Hakura, Atsushi
    Asakura, Shoji
    Matsuoka, Yukiko
    Palaniappan, Sucheendra K.
    MUTAGENESIS, 2022, 37 (3-4) : 191 - 202
  • [4] Machine-Learning Techniques for Feature Selection and Prediction of Mortality in Elderly CABG Patients
    Huang, Yen-Chun
    Li, Shao-Jung
    Chen, Mingchih
    Lee, Tian-Shyug
    Chien, Yu-Ning
    HEALTHCARE, 2021, 9 (05)
  • [5] A machine-learning approach for predicting B-cell epitopes
    Rubinstein, Nimrod D.
    Mayrose, Itay
    Pupko, Tal
    MOLECULAR IMMUNOLOGY, 2009, 46 (05) : 840 - 847
  • [6] Groundwater Prediction Using Machine-Learning Tools
    Hussein, Eslam A.
    Thron, Christopher
    Ghaziasgar, Mehrdad
    Bagula, Antoine
    Vaccari, Mattia
    ALGORITHMS, 2020, 13 (11)
  • [7] Advancing interpretability of machine-learning prediction models
    Trenary, Laurie
    DelSole, Timothy
    ENVIRONMENTAL DATA SCIENCE, 2022, 1
  • [8] Anxiety onset in adolescents: a machine-learning prediction
    Alice V. Chavanne
    Marie Laure Paillère Martinot
    Jani Penttilä
    Yvonne Grimmer
    Patricia Conrod
    Argyris Stringaris
    Betteke van Noort
    Corinna Isensee
    Andreas Becker
    Tobias Banaschewski
    Arun L. W. Bokde
    Sylvane Desrivières
    Herta Flor
    Antoine Grigis
    Hugh Garavan
    Penny Gowland
    Andreas Heinz
    Rüdiger Brühl
    Frauke Nees
    Dimitri Papadopoulos Orfanos
    Tomáš Paus
    Luise Poustka
    Sarah Hohmann
    Sabina Millenet
    Juliane H. Fröhner
    Michael N. Smolka
    Henrik Walter
    Robert Whelan
    Gunter Schumann
    Jean-Luc Martinot
    Eric Artiges
    Molecular Psychiatry, 2023, 28 : 639 - 646
  • [9] A machine-learning algorithm for wind gust prediction
    Sallis, P. J.
    Claster, W.
    Hernandez, S.
    COMPUTERS & GEOSCIENCES, 2011, 37 (09) : 1337 - 1344
  • [10] Anxiety onset in adolescents: a machine-learning prediction
    Chavanne, Alice
    Paillere Martinot, Marie Laure
    Penttilae, Jani
    Grimmer, Yvonne
    Conrod, Patricia
    Stringaris, Argyris
    van Noort, Betteke
    Isensee, Corinna
    Becker, Andreas
    Banaschewski, Tobias
    Bokde, Arun L. W.
    Desrivieres, Sylvane
    Flor, Herta
    Grigis, Antoine
    Garavan, Hugh
    Gowland, Penny
    Heinz, Andreas
    Bruehl, Ruediger
    Nees, Frauke
    Orfanos, Dimitri Papadopoulos
    Paus, Tomas
    Poustka, Luise
    Hohmann, Sarah S.
    Millenet, Sabina
    Froehner, Juliane
    Smolka, Michael
    Walter, Henrik
    Whelan, Robert
    Schumann, Gunter
    Martinot, Jean-Luc
    Artiges, Eric
    MOLECULAR PSYCHIATRY, 2023, 28 (02) : 639 - 646