Mining Brain Region Connectivity for Alzheimer's Disease Study via Sparse Inverse Covariance Estimation

被引:0
|
作者
Sun, Liang [1 ]
Patel, Rinkal
Liu, Jun [1 ]
Chen, Kewei
Wu, Teresa
Li, Jing
Reiman, Eric
Ye, Jieping [1 ]
机构
[1] Arizona State Univ, Biodesign Inst, Ctr Evolutionary Funct Genom, Tempe, AZ 85287 USA
关键词
Brain network; Alzheimer's disease; neuroimaging; FDG-PET; sparse inverse covariance estimation; SELECTION; NETWORKS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Effective diagnosis of Alzheimer's disease (AD), the most common type of dementia in elderly patients, is of primary importance in biomedical research. Recent studies have demonstrated that AD is closely related to the structure change of the brain network, i.e., the connectivity among different brain regions. The connectivity patterns will pro-vide useful imaging-based biomarkers to distinguish Normal Controls (NC), patients with Mild Cognitive Impairment (MCI), and patients with AD. In this paper, we investigate the sparse inverse covariance estimation technique for identifying the connectivity among different brain regions. In particular, a novel algorithm based on the block coordinate descent approach is proposed for the direct estimation of the inverse covariance matrix. One appealing feature of the proposed algorithm is that it allows the user feedback (e.g., prior domain knowledge) to be incorporated into the estimation process, while the connectivity patterns can be discovered automatically. We apply the proposed algorithm to a collection of FDG-PET images from 232 NC, MCI, and AD subjects. Our experimental results demonstrate that the proposed algorithm is promising in revealing the brain region connectivity differences among these groups.
引用
收藏
页码:1335 / 1343
页数:9
相关论文
共 50 条
  • [41] Concordance of Intrinsic Brain Connectivity Measures Is Disrupted in Alzheimer's Disease
    Chen, Xiangliang
    Onur, Oezguer A.
    Richter, Nils
    Fassbender, Ronja
    Gramespacher, Hannes
    Befahr, Qumars
    von Reutern, Boris
    Dillen, Kim
    Jacobs, Heidi I. L.
    Kukolja, Juraj
    Fink, Gereon R.
    Dronse, Julian
    BRAIN CONNECTIVITY, 2023, 13 (06) : 344 - 355
  • [42] Brain functional connectivity in response to donepezil treatment in Alzheimer's disease
    Zaidel, L.
    Fields, J.
    Cullum, C.
    Briggs, R.
    Hynan, L.
    Weiner, M. F.
    McColl, R.
    McDonald, E.
    Rubin, C. D.
    Allen, G.
    ARCHIVES OF CLINICAL NEUROPSYCHOLOGY, 2006, 21 (06) : 588 - 588
  • [43] Sex difference in brain functional connectivity of hippocampus in Alzheimer’s disease
    Jordan Williamson
    Shirley A. James
    Peter Mukli
    Andriy Yabluchanskiy
    Dee H. Wu
    William Sonntag
    Yuan Yang
    GeroScience, 2024, 46 (1) : 563 - 572
  • [44] Discriminative Brain Effective Connectivity Analysis for Alzheimer's Disease: A Kernel Learning Approach upon Sparse Gaussian Bayesian Network
    Zhou, Luping
    Wang, Lei
    Liu, Lingqiao
    Ogunbona, Philip
    Shen, Dinggang
    2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, : 2243 - 2250
  • [45] Accessing dynamic functional connectivity using l0-regularized sparse-smooth inverse covariance estimation from fMRI
    Zhang, Li
    Fu, Zening
    Zhang, Wenwen
    Huang, Gan
    Liang, Zhen
    Li, Linling
    Biswal, Bharat B.
    Calhoun, Vince D.
    Zhang, Zhiguo
    NEUROCOMPUTING, 2021, 443 : 147 - 161
  • [46] “Small World” architecture in brain connectivity and hippocampal volume in Alzheimer’s disease: a study via graph theory from EEG data
    Fabrizio Vecchio
    Francesca Miraglia
    Francesca Piludu
    Giuseppe Granata
    Roberto Romanello
    Massimo Caulo
    Valeria Onofrj
    Placido Bramanti
    Cesare Colosimo
    Paolo Maria Rossini
    Brain Imaging and Behavior, 2017, 11 : 473 - 485
  • [47] "Small World" architecture in brain connectivity and hippocampal volume in Alzheimer's disease: a study via graph theory from EEG data
    Vecchio, Fabrizio
    Miraglia, Francesca
    Piludu, Francesca
    Granata, Giuseppe
    Romanello, Roberto
    Caulo, Massimo
    Onofrj, Valeria
    Bramanti, Placido
    Colosimo, Cesare
    Rossini, Paolo Maria
    BRAIN IMAGING AND BEHAVIOR, 2017, 11 (02) : 473 - 485
  • [48] ENRICHING STATISTICAL INFERENCES ON BRAIN CONNECTIVITY FOR ALZHEIMER'S DISEASE ANALYSIS VIA LATENT SPACE GRAPH EMBEDDING
    Ma, Xin
    Wu, Guorong
    Kim, Won Hwa
    2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, : 1685 - 1689
  • [49] Brain imaging in the study of Alzheimer's disease
    Reiman, Eric M.
    Jagust, William J.
    NEUROIMAGE, 2012, 61 (02) : 505 - 516
  • [50] FLOW-BASED NETWORK MEASURES OF BRAIN CONNECTIVITY IN ALZHEIMER'S DISEASE
    Prasad, Gautam
    Joshi, Shantanu H.
    Nir, Talia M.
    Toga, Arthur W.
    Thompson, Paul M.
    2013 IEEE 10TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2013, : 258 - 261