Mining Brain Region Connectivity for Alzheimer's Disease Study via Sparse Inverse Covariance Estimation

被引:0
|
作者
Sun, Liang [1 ]
Patel, Rinkal
Liu, Jun [1 ]
Chen, Kewei
Wu, Teresa
Li, Jing
Reiman, Eric
Ye, Jieping [1 ]
机构
[1] Arizona State Univ, Biodesign Inst, Ctr Evolutionary Funct Genom, Tempe, AZ 85287 USA
关键词
Brain network; Alzheimer's disease; neuroimaging; FDG-PET; sparse inverse covariance estimation; SELECTION; NETWORKS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Effective diagnosis of Alzheimer's disease (AD), the most common type of dementia in elderly patients, is of primary importance in biomedical research. Recent studies have demonstrated that AD is closely related to the structure change of the brain network, i.e., the connectivity among different brain regions. The connectivity patterns will pro-vide useful imaging-based biomarkers to distinguish Normal Controls (NC), patients with Mild Cognitive Impairment (MCI), and patients with AD. In this paper, we investigate the sparse inverse covariance estimation technique for identifying the connectivity among different brain regions. In particular, a novel algorithm based on the block coordinate descent approach is proposed for the direct estimation of the inverse covariance matrix. One appealing feature of the proposed algorithm is that it allows the user feedback (e.g., prior domain knowledge) to be incorporated into the estimation process, while the connectivity patterns can be discovered automatically. We apply the proposed algorithm to a collection of FDG-PET images from 232 NC, MCI, and AD subjects. Our experimental results demonstrate that the proposed algorithm is promising in revealing the brain region connectivity differences among these groups.
引用
收藏
页码:1335 / 1343
页数:9
相关论文
共 50 条
  • [21] The effect of age of onset on the brain functional connectivity in Alzheimer's disease: a graph analysis study
    Canu, E.
    Agosta, F.
    Galantucci, S.
    Meani, A.
    Magnani, G.
    Caso, F.
    Marcone, A.
    Falini, A.
    Comi, G.
    Filippi, M.
    EUROPEAN JOURNAL OF NEUROLOGY, 2014, 21 : 33 - 33
  • [22] Functional brain connectivity in Alzheimer's disease: An EEG study based on permutation disalignment index
    Yu, Haitao
    Lei, Xinyu
    Song, Zhenxi
    Wang, Jiang
    Wei, Xile
    Yu, Baoqi
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 506 : 1093 - 1103
  • [23] A study of human brain structural connectivity based on diffusion tensor imaging in Alzheimer's disease
    Hong, Hao
    Yao, Li
    Zhao, Xiaojie
    2009 ICME INTERNATIONAL CONFERENCE ON COMPLEX MEDICAL ENGINEERING, 2009, : 204 - 207
  • [24] The effect of age of onset on the brain functional connectivity in Alzheimer's disease: a graph analysis study
    Canu, E.
    Agosta, F.
    Galantucci, S.
    Meani, A.
    Magnani, G.
    Caso, F.
    Marcone, A.
    Falini, A.
    Comi, G.
    Filippi, M.
    JOURNAL OF ALZHEIMERS DISEASE, 2014, 41 : S11 - S11
  • [25] Preference matrix guided sparse canonical correlation analysis for mining brain imaging genetic associations in Alzheimer's disease
    Sha, Jiahang
    Bao, Jingxuan
    Liu, Kefei
    Yang, Shu
    Wen, Zixuan
    Wen, Junhao
    Cui, Yuhan
    Tong, Boning
    Moore, Jason H.
    Saykin, Andrew J.
    Davatzikos, Christos
    Long, Qi
    Shen, Li
    METHODS, 2023, 218 : 27 - 38
  • [26] The effect of age of onset on the brain functional connectivity in Alzheimer's disease: a graph analysis study
    Canu, E.
    Agosta, F.
    Galantucci, S.
    Meani, A.
    Magnani, G.
    Caso, F.
    Marcone, A.
    Falini, A.
    Comi, G.
    Filippi, M.
    JOURNAL OF NEUROLOGY, 2014, 261 : S26 - S26
  • [27] Hierarchical Clustering of the Electroencephalogram Spectral Coherence to Study the Changes in Brain Connectivity in Alzheimer's Disease
    Mammone, Nadia
    Bonanno, Lilla
    De Salvo, Simona
    Bramanti, Alessia
    Bramanti, Placido
    Adeli, Hojjat
    Ieracitano, Cosimo
    Campolo, Maurizio
    Morabito, Francesco C.
    2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 1241 - 1248
  • [28] Brain metabolic network covariance and aging in a mouse model of Alzheimer's disease
    Chumin, Evgeny
    Burton, Charles
    Silvola, Rebecca
    Miner, Ethan
    Persohn, Scott
    Veronese, Mattia
    Territo, Paul
    ALZHEIMERS & DEMENTIA, 2024, 20 (03) : 1538 - 1549
  • [29] Network analysis of intrinsic functional brain connectivity in Alzheimer's disease
    Supekar, Kaustubh
    Menon, Vinod
    Rubin, Daniel
    Musen, Mark
    Greicius, Michael D.
    PLOS COMPUTATIONAL BIOLOGY, 2008, 4 (06)
  • [30] An eXplainability Artificial Intelligence approach to brain connectivity in Alzheimer's disease
    Amoroso, Nicola
    Quarto, Silvano
    La Rocca, Marianna
    Tangaro, Sabina
    Monaco, Alfonso
    Bellotti, Roberto
    FRONTIERS IN AGING NEUROSCIENCE, 2023, 15