Data-Driven Reconstruction of Spectral Conductivity and Chemical Potential Using Thermoelectric Transport Properties

被引:2
|
作者
Hirosawa, Tomoki [1 ,2 ,3 ]
Schaefer, Frank [2 ,4 ]
Maebashi, Hideaki [1 ]
Matsuura, Hiroyasu [1 ]
Ogata, Masao [1 ,5 ]
机构
[1] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan
[2] Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland
[3] Aoyama Gakuin Univ, Dept Phys Sci, Sagamihara, Kanagawa 2525258, Japan
[4] MIT, CSAIL, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[5] Univ Tokyo, Transscale Quantum Sci Inst, Bunkyo Ku, Tokyo 1130033, Japan
基金
瑞士国家科学基金会; 日本学术振兴会;
关键词
IRREVERSIBLE-PROCESSES; ANALYTIC CONTINUATION; ELECTRONIC-STRUCTURE;
D O I
10.7566/JPSJ.91.114603
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The spectral conductivity, i.e., the electrical conductivity as a function of the Fermi energy, is a cornerstone in determining the thermoelectric transport properties of electrons. However, the spectral conductivity depends on sample -specific properties such as carrier concentrations, vacancies, charge impurities, chemical compositions, and material microstructures, making it difficult to relate the experimental result with the theoretical prediction directly. Here, we propose a data-driven approach based on machine learning to reconstruct the spectral conductivity and chemical potential from the thermoelectric transport data. Using this machine learning method, we first demonstrate that the spectral conductivity and temperature-dependent chemical potentials can be recovered within a simple toy model. In a second step, we apply our method to experimental data in doped one-dimensional telluride Ta4SiTe4 [Inohara, et al., Appl. Phys. Lett. 110, 183901 (2017)] to reconstruct the spectral conductivity and chemical potential for each sample. Furthermore, the thermal conductivity of electrons and the maximal figure of merit ZT are estimated from the reconstructed spectral conductivity, which provides accurate estimates beyond the Wiedemann-Franz law. Our study clarifies the connection between the thermoelectric transport properties and the low-energy electronic states of real materials, and establishes a promising route to incorporate experimental data into traditional theory-driven workflows.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Data-driven optimization for transport and logistics systems
    Sharif, Shadi
    Aydin, Nursen
    EURO JOURNAL ON TRANSPORTATION AND LOGISTICS, 2023, 12
  • [42] Data-driven Management of Dynamic Public Transport
    Horazdovsky, Patrik
    Novotny, Vojtech
    Svitek, Miroslav
    2018 SMART CITY SYMPOSIUM PRAGUE (SCSP), 2018,
  • [43] Data-driven modelling in the context of sediment transport
    Bhattacharya, B
    Price, RK
    Solomatine, DP
    PHYSICS AND CHEMISTRY OF THE EARTH, 2005, 30 (4-5) : 297 - 302
  • [44] Electron tomography image reconstruction using data-driven adaptive compressed sensing
    Al-Afeef, Ala'
    Cockshott, W. Paul
    MacLaren, Ian
    McVitie, Stephen
    SCANNING, 2016, 38 (03) : 251 - 276
  • [45] Design of Hybrid Reconstruction Scheme for Compressible Flow Using Data-Driven Methods
    Salazar, A.
    Xiao, F.
    JOURNAL OF MECHANICS, 2020, 36 (05) : 675 - 689
  • [46] Data-Driven Strategy for Appliance Identification Using Phase-Space Reconstruction
    Ghosh, Soumyajit
    Mitra, Arindam
    Chakrabarti, Saikat
    Sharma, Ankush
    IEEE TRANSACTIONS ON SMART GRID, 2023, 14 (06) : 4964 - 4967
  • [47] Data-Driven Aggregation Control for Thermoelectric Loads in Demand Response
    Cordoba-Pacheco, Andres
    Diaz-Londono, Cesar
    Ruiz, Fredy
    IFAC PAPERSONLINE, 2022, 55 (40): : 205 - 210
  • [48] Data-Driven Review of Thermoelectric Materials: Performance and Resource Considerations
    Gaultois, Michael W.
    Sparks, Taylor D.
    Borg, Christopher K. H.
    Seshadri, Ram
    Bonificio, William D.
    Clarke, David R.
    CHEMISTRY OF MATERIALS, 2013, 25 (15) : 2911 - 2920
  • [49] Data-driven neural networks for source localization and reconstruction using a planar array
    Kaja, Sai Manikanta
    Srinivasan, Srinath
    Chaitanya, S. K.
    Srinivasan, K.
    INTERNATIONAL JOURNAL OF AEROACOUSTICS, 2022, 21 (08) : 684 - 707
  • [50] Data-driven Reconstruction of Gravitationally Lensed Galaxies Using Recurrent Inference Machines
    Morningstar, Warren R.
    Levasseur, Laurence Perreault
    Hezaveh, Yashar D.
    Blandford, Roger
    Marshall, Phil
    Putzky, Patrick
    Rueter, Thomas D.
    Wechsler, Risa
    Welling, Max
    ASTROPHYSICAL JOURNAL, 2019, 883 (01):