Data-Driven Reconstruction of Spectral Conductivity and Chemical Potential Using Thermoelectric Transport Properties

被引:2
|
作者
Hirosawa, Tomoki [1 ,2 ,3 ]
Schaefer, Frank [2 ,4 ]
Maebashi, Hideaki [1 ]
Matsuura, Hiroyasu [1 ]
Ogata, Masao [1 ,5 ]
机构
[1] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan
[2] Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland
[3] Aoyama Gakuin Univ, Dept Phys Sci, Sagamihara, Kanagawa 2525258, Japan
[4] MIT, CSAIL, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[5] Univ Tokyo, Transscale Quantum Sci Inst, Bunkyo Ku, Tokyo 1130033, Japan
基金
瑞士国家科学基金会; 日本学术振兴会;
关键词
IRREVERSIBLE-PROCESSES; ANALYTIC CONTINUATION; ELECTRONIC-STRUCTURE;
D O I
10.7566/JPSJ.91.114603
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The spectral conductivity, i.e., the electrical conductivity as a function of the Fermi energy, is a cornerstone in determining the thermoelectric transport properties of electrons. However, the spectral conductivity depends on sample -specific properties such as carrier concentrations, vacancies, charge impurities, chemical compositions, and material microstructures, making it difficult to relate the experimental result with the theoretical prediction directly. Here, we propose a data-driven approach based on machine learning to reconstruct the spectral conductivity and chemical potential from the thermoelectric transport data. Using this machine learning method, we first demonstrate that the spectral conductivity and temperature-dependent chemical potentials can be recovered within a simple toy model. In a second step, we apply our method to experimental data in doped one-dimensional telluride Ta4SiTe4 [Inohara, et al., Appl. Phys. Lett. 110, 183901 (2017)] to reconstruct the spectral conductivity and chemical potential for each sample. Furthermore, the thermal conductivity of electrons and the maximal figure of merit ZT are estimated from the reconstructed spectral conductivity, which provides accurate estimates beyond the Wiedemann-Franz law. Our study clarifies the connection between the thermoelectric transport properties and the low-energy electronic states of real materials, and establishes a promising route to incorporate experimental data into traditional theory-driven workflows.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Grid data transport: Planning for a data-driven grid
    Ogle, Jim
    IEEE POWER & ENERGY MAGAZINE, 2023, 21 (05): : 15 - 17
  • [32] Data ratcheting and data-driven organisational change in transport
    Heaphy, Liam
    BIG DATA & SOCIETY, 2019, 6 (02):
  • [33] Data-Driven Mapping Between Functional Connectomes Using Optimal Transport
    Dadashkarimi, Javid
    Karbasi, Amin
    Scheinost, Dustin
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT III, 2021, 12903 : 293 - 302
  • [34] Predicting thermal conductivity of carbon dioxide using group of data-driven models
    Amar, Menad Nait
    Ghahfarokhi, Ashkan Jahanbani
    Zeraibi, Noureddine
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2020, 113 : 165 - 177
  • [35] Data-driven electrical conductivity brain imaging using 3 T MRI
    Jung, Kyu-Jin
    Mandija, Stefano
    Cui, Chuanjiang
    Kim, Jun-Hyeong
    Al-masni, Mohammed A.
    Meerbothe, Thierry G.
    Park, Mina
    van den Berg, Cornelis A. T.
    Kim, Dong-Hyun
    HUMAN BRAIN MAPPING, 2023, 44 (15) : 4986 - 5001
  • [36] Data-Driven Progressive Mesh Compression Using Associated Properties
    Cirio, Gabriel
    Lavoue, Guillaume
    Dupont, Florent
    COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS: THEORY AND APPLICATIONS, 2011, 229 : 203 - +
  • [37] Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules
    Gomez-Bombarelli, Rafael
    Wei, Jennifer N.
    Duvenaud, David
    Hernandez-Lobato, Jose Miguel
    Sanchez-Lengeling, Benjamin
    Sheberla, Dennis
    Aguilera-Iparraguirre, Jorge
    Hirzel, Timothy D.
    Adams, Ryan P.
    Aspuru-Guzik, Alan
    ACS CENTRAL SCIENCE, 2018, 4 (02) : 268 - 276
  • [38] Finite element approximation of data-driven problems in conductivity
    Schiemann, Annika
    Meyer, Christian
    CALCOLO, 2024, 61 (04)
  • [39] Data-driven optimization for Intelligent and Efficient Transport
    Bjurling, Bjorn
    Ben Abdesslem, Fehmi
    ERCIM NEWS, 2016, (105): : 23 - 23
  • [40] Phenomenological Constraints on the Transport Properties of QCD Matter with Data-Driven Model Averaging
    Everett, D.
    Ke, W.
    Paquet, J-F
    Vujanovic, G.
    Bass, S. A.
    Du, L.
    Gale, C.
    Heffernan, M.
    Heinz, U.
    Liyanage, D.
    Luzum, M.
    Majumder, A.
    McNelis, M.
    Shen, C.
    Xu, Y.
    Angerami, A.
    Cao, S.
    Chen, Y.
    Coleman, J.
    Cunqueiro, L.
    Dai, T.
    Ehlers, R.
    Elfner, H.
    Fan, W.
    Fries, R. J.
    Garza, F.
    He, Y.
    Jacak, B., V
    Jacobs, P. M.
    Jeon, S.
    Kim, B.
    Kordell, M., II
    Kumar, A.
    Mak, S.
    Mulligan, J.
    Nattrass, C.
    Oliinychenko, D.
    Park, C.
    Putschke, J. H.
    Roland, G.
    Schenke, B.
    Schwiebert, L.
    Silva, A.
    Sirimanna, C.
    Soltz, R. A.
    Tachibana, Y.
    Wang, X-N
    Wolpert, R. L.
    PHYSICAL REVIEW LETTERS, 2021, 126 (24)