Detection and Prediction of Bioprosthetic Aortic Valve Degeneration

被引:116
|
作者
Cartlidge, Timothy R. G. [1 ]
Doris, Mhairi K. [1 ]
Sellers, Stephanie L. [2 ]
Pawade, Tania A. [1 ]
White, Audrey C. [1 ]
Pessotto, Renzo [1 ]
Kwiecinski, Jacek [1 ]
Fletcher, Alison [3 ]
Alcaide, Carlos [1 ]
Lucatelli, Christophe [3 ]
Densem, Cameron [4 ]
Rudd, James H. F. [5 ]
van Beek, Edwin J. R. [3 ]
Tavares, Adriana [1 ]
Virmani, Renu [6 ]
Berman, Daniel [7 ]
Leipsic, Jonathon A. [2 ]
Newby, David E. [1 ]
Dweck, Marc R. [1 ]
机构
[1] Univ Edinburgh, British Heart Fdn, Ctr Cardiovasc Sci, Edinburgh, Midlothian, Scotland
[2] Univ Edinburgh, Queens Med Res Inst, Edinburgh Imaging Facil, Edinburgh, Midlothian, Scotland
[3] Univ British Columbia, St Pauls Hosp, Dept Radiol, Vancouver, BC, Canada
[4] Papworth Hosp NHS Fdn Trust, Dept Cardiol, Cambridge, England
[5] Univ Cambridge, Div Cardiovasc Med, Cambridge, England
[6] CVPath Inst, Gaithersburg, MD USA
[7] Cedars Sinai Heart Inst, Los Angeles, CA USA
基金
英国工程与自然科学研究理事会; 英国惠康基金;
关键词
aortic valve replacement; bioprosthetic valve degeneration; calcification; histology; positron emission tomography; SUBCLINICAL LEAFLET THROMBOSIS; PROSTHETIC HEART-VALVES; EUROPEAN ASSOCIATION; AMERICAN SOCIETY; FLUORIDE UPTAKE; TRANSCATHETER; ECHOCARDIOGRAPHY; RECOMMENDATIONS; CALCIFICATION; REPLACEMENT;
D O I
10.1016/j.jacc.2018.12.056
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BACKGROUND Bioprosthetic aortic valve degeneration is increasingly common, often unheralded, and can have catastrophic consequences. OBJECTIVES The authors sought to assess whether 18F-fluoride positron emission tomography (PET)-computed tomography (CT) can detect bioprosthetic aortic valve degeneration and predict valve dysfunction. METHODS Explanted degenerate bioprosthetic valves were examined ex vivo. Patients with bioprosthetic aortic valves were recruited into 2 cohorts with and without prosthetic valve dysfunction and underwent in vivo contrast-enhanced CT angiography, 18F-fluoride PET, and serial echocardiography during 2 years of follow-up. RESULTS All ex vivo, degenerate bioprosthetic valves displayed 18F-fluoride PET uptake that colocalized with tissue degeneration on histology. In 71 patients without known bioprosthesis dysfunction, 14 had abnormal leaflet pathology on CT, and 24 demonstrated 18F-fluoride PET uptake (target-to-background ratio 1.55 [interquartile range (IQR): 1.44 to 1.88]). Patients with increased 18F-fluoride uptake exhibited more rapid deterioration in valve function compared with those without (annualized change in peak transvalvular velocity 0.30 [IQR: 0.13 to 0.61] vs. 0.01 [IQR: -0.05 to 0.16] ms(-1)/year; p < 0.001). Indeed 18F-fluoride uptake correlated with deterioration in all the conventional echocardiographic measures of valve function assessed (e. g., change in peak velocity, r <1/4> 0.72; p < 0.001). Each of the 10 patients who developed new overt bioprosthesis dysfunction during follow-up had evidence of 18F-fluoride uptake at baseline (targetto- background ratio 1.89 [IQR: 1.46 to 2.59]). On multivariable analysis, 18F-fluoride uptake was the only independent predictor of future bioprosthetic dysfunction. CONCLUSIONS 18F-fluoride PET-CT identifies subclinical bioprosthetic valve degeneration, providing powerful prediction of subsequent valvular dysfunction and highlighting patients at risk of valve failure. This technique holds major promise in the diagnosis of valvular degeneration and the surveillance of patients with bioprosthetic valves. (18F-Fluoride Assessment of Aortic Bioprosthesis Durability and Outcome [18F-FAABULOUS]; NCT02304276) (J Am Coll Cardiol 2019; 73: 1107-19) (c) 2019 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation. This is an open access article under the CC BY license (http://creativecommons. org/licenses/by/4.0/).
引用
收藏
页码:1107 / 1119
页数:13
相关论文
共 50 条
  • [21] Structural valve degeneration of bioprosthetic aortic valves: A network meta-analysis
    Squiers, John J.
    Robinson, N. Bryce
    Audisio, Katia
    Ryan, William H.
    Mack, Michael J.
    Rahouma, Mohamed
    Cancelli, Gianmarco
    Kirov, Hristo
    Doenst, Torsten
    Gaudino, Mario
    DiMaio, J. Michael
    JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, 2023, 166 (01): : 52 - 59
  • [22] Predictive value of circulating progenitor cell apoptosis on bioprosthetic aortic valve degeneration
    Kolker, S.
    Shimoni, S.
    Goland, S.
    Gandelman, G.
    Maladin, V.
    George, J.
    EUROPEAN HEART JOURNAL, 2017, 38 : 1357 - 1357
  • [23] Standardized Definition of Structural Valve Degeneration for Surgical and Transcatheter Bioprosthetic Aortic Valves
    Dvir, Danny
    Bourguignon, Thierry
    Otto, Catherine M.
    Hahn, Rebecca T.
    Rosenhek, Raphael
    Webb, John G.
    Treede, Hendrik
    Sarano, Maurice E.
    Feldman, Ted
    Wijeysundera, Harindra C.
    Topilsky, Yan
    Aupart, Michel
    Reardon, Michael J.
    Mackensen, G. Burkhard
    Szeto, Wilson Y.
    Kornowski, Ran
    Gammie, James S.
    Yoganathan, Ajit P.
    Arbel, Yaron
    Borger, Michael A.
    Simonato, Matheus
    Reisman, Mark
    Makkar, Raj R.
    Abizaid, Alexandre
    McCabe, James M.
    Dahle, Gry
    Aldea, Gabriel S.
    Leipsic, Jonathon
    Pibarot, Philippe
    Moat, Neil E.
    Mack, Michael J.
    Kappetein, A. Pieter
    Leon, Martin B.
    CIRCULATION, 2018, 137 (04) : 388 - 399
  • [24] BIOPROSTHETIC TRANSCATHETER AORTIC VALVE DEGENERATION LIKELY SECONDARY TO IMMUNE CHECKPOINT INHIBITOR
    Latif, Azka
    Patel, Tusharbhai
    Lee, Michelle
    Denktas, Ali E.
    Khalid, Umair
    Zaid, Syed
    Liu, Jing
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2024, 83 (13) : 3852 - 3852
  • [25] Determinants of bioprosthetic heart valve degeneration
    Nitsche, Christian
    Goliasch, Georg
    Kammerlander, Andreas
    Zimpfer, Daniel
    Laufer, Guenther
    Bonderman, Diana
    Mascherbauer, Julia
    WIENER KLINISCHE WOCHENSCHRIFT, 2018, 130 : 271 - 271
  • [26] Determinants of bioprosthetic heart valve degeneration
    Nitsche, C.
    Knechtelsdorfer, K.
    Kammerlander, A.
    Goliasch, G.
    Oeztuerk, B.
    Schachner, L.
    Binder, C.
    Duca, F.
    Aschauer, S.
    Laufer, G.
    Hengstenberg, C.
    Bonderman, D.
    Mascherbauer, J.
    WIENER KLINISCHE WOCHENSCHRIFT, 2018, 130 : 121 - 121
  • [27] Prediction Models for the Treatment of Bioprosthetic Aortic Valve Failure in the United States
    Genereux, Philippe
    Khol, Julie
    Leon, Martin B.
    Dar, Roy D.
    Puri, Rishi
    Rozenman, Yoseph
    Szerlip, Molly
    Yadav, Pradeep K.
    Thourani, Vinod H.
    Pibarot, Philippe
    Dvir, Danny
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2024, 84 (18) : B357 - B357
  • [28] Ultrastructural Pathology of Atherosclerosis, Calcific Aortic Valve Disease, and Bioprosthetic Heart Valve Degeneration: Commonalities and Differences
    Kostyunin, Alexander
    Mukhamadiyarov, Rinat
    Glushkova, Tatiana
    Bogdanov, Leo
    Shishkova, Daria
    Osyaev, Nikolay
    Ovcharenko, Evgeniy
    Kutikhin, Anton
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (20) : 1 - 17
  • [29] IMPENDING CARDIOGENIC SHOCK SECONDARY TO AORTIC BIOPROSTHETIC VALVE FAILURE: A MANIFESTATION OF EARLY STRUCTURAL VALVE DEGENERATION
    Kumar, Ajay
    Iqbal, Shaikh B.
    Rao, Shiavax J.
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2024, 83 (13) : 4284 - 4284
  • [30] Bioprosthetic aortic valve durability in the era of transcatheter aortic valve implantation
    Salaun, Erwan
    Clavel, Marie-Annick
    Rodes-Capau, Josep
    Pibarot, Philippe
    HEART, 2018, 104 (16) : 1323 - 1332