Detection and Prediction of Bioprosthetic Aortic Valve Degeneration

被引:116
|
作者
Cartlidge, Timothy R. G. [1 ]
Doris, Mhairi K. [1 ]
Sellers, Stephanie L. [2 ]
Pawade, Tania A. [1 ]
White, Audrey C. [1 ]
Pessotto, Renzo [1 ]
Kwiecinski, Jacek [1 ]
Fletcher, Alison [3 ]
Alcaide, Carlos [1 ]
Lucatelli, Christophe [3 ]
Densem, Cameron [4 ]
Rudd, James H. F. [5 ]
van Beek, Edwin J. R. [3 ]
Tavares, Adriana [1 ]
Virmani, Renu [6 ]
Berman, Daniel [7 ]
Leipsic, Jonathon A. [2 ]
Newby, David E. [1 ]
Dweck, Marc R. [1 ]
机构
[1] Univ Edinburgh, British Heart Fdn, Ctr Cardiovasc Sci, Edinburgh, Midlothian, Scotland
[2] Univ Edinburgh, Queens Med Res Inst, Edinburgh Imaging Facil, Edinburgh, Midlothian, Scotland
[3] Univ British Columbia, St Pauls Hosp, Dept Radiol, Vancouver, BC, Canada
[4] Papworth Hosp NHS Fdn Trust, Dept Cardiol, Cambridge, England
[5] Univ Cambridge, Div Cardiovasc Med, Cambridge, England
[6] CVPath Inst, Gaithersburg, MD USA
[7] Cedars Sinai Heart Inst, Los Angeles, CA USA
基金
英国工程与自然科学研究理事会; 英国惠康基金;
关键词
aortic valve replacement; bioprosthetic valve degeneration; calcification; histology; positron emission tomography; SUBCLINICAL LEAFLET THROMBOSIS; PROSTHETIC HEART-VALVES; EUROPEAN ASSOCIATION; AMERICAN SOCIETY; FLUORIDE UPTAKE; TRANSCATHETER; ECHOCARDIOGRAPHY; RECOMMENDATIONS; CALCIFICATION; REPLACEMENT;
D O I
10.1016/j.jacc.2018.12.056
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BACKGROUND Bioprosthetic aortic valve degeneration is increasingly common, often unheralded, and can have catastrophic consequences. OBJECTIVES The authors sought to assess whether 18F-fluoride positron emission tomography (PET)-computed tomography (CT) can detect bioprosthetic aortic valve degeneration and predict valve dysfunction. METHODS Explanted degenerate bioprosthetic valves were examined ex vivo. Patients with bioprosthetic aortic valves were recruited into 2 cohorts with and without prosthetic valve dysfunction and underwent in vivo contrast-enhanced CT angiography, 18F-fluoride PET, and serial echocardiography during 2 years of follow-up. RESULTS All ex vivo, degenerate bioprosthetic valves displayed 18F-fluoride PET uptake that colocalized with tissue degeneration on histology. In 71 patients without known bioprosthesis dysfunction, 14 had abnormal leaflet pathology on CT, and 24 demonstrated 18F-fluoride PET uptake (target-to-background ratio 1.55 [interquartile range (IQR): 1.44 to 1.88]). Patients with increased 18F-fluoride uptake exhibited more rapid deterioration in valve function compared with those without (annualized change in peak transvalvular velocity 0.30 [IQR: 0.13 to 0.61] vs. 0.01 [IQR: -0.05 to 0.16] ms(-1)/year; p < 0.001). Indeed 18F-fluoride uptake correlated with deterioration in all the conventional echocardiographic measures of valve function assessed (e. g., change in peak velocity, r <1/4> 0.72; p < 0.001). Each of the 10 patients who developed new overt bioprosthesis dysfunction during follow-up had evidence of 18F-fluoride uptake at baseline (targetto- background ratio 1.89 [IQR: 1.46 to 2.59]). On multivariable analysis, 18F-fluoride uptake was the only independent predictor of future bioprosthetic dysfunction. CONCLUSIONS 18F-fluoride PET-CT identifies subclinical bioprosthetic valve degeneration, providing powerful prediction of subsequent valvular dysfunction and highlighting patients at risk of valve failure. This technique holds major promise in the diagnosis of valvular degeneration and the surveillance of patients with bioprosthetic valves. (18F-Fluoride Assessment of Aortic Bioprosthesis Durability and Outcome [18F-FAABULOUS]; NCT02304276) (J Am Coll Cardiol 2019; 73: 1107-19) (c) 2019 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation. This is an open access article under the CC BY license (http://creativecommons. org/licenses/by/4.0/).
引用
收藏
页码:1107 / 1119
页数:13
相关论文
共 50 条
  • [1] Determinants of Bioprosthetic Aortic Valve Degeneration
    Nitsche, Christian
    Kammerlander, Andreas A.
    Knechtelsdorfer, Klaus
    Kraiger, Jakob A.
    Goliasch, Georg
    Dona, Carolina
    Schachner, Laurin
    Oeztuerk, Beguem
    Binder, Christina
    Duca, Franz
    Aschauer, Stefan
    Zimpfer, Daniel
    Bonderman, Diana
    Hengstenberg, Christian
    Mascherbauer, Julia
    JACC-CARDIOVASCULAR IMAGING, 2020, 13 (02) : 345 - 353
  • [2] Biomarkers of aortic bioprosthetic valve structural degeneration
    Salaun, Erwan
    Cote, Nancy
    Clavel, Marie-Annick
    Pibarot, Philippe
    CURRENT OPINION IN CARDIOLOGY, 2019, 34 (02) : 132 - 139
  • [3] Serum lipoprotein(a) and bioprosthetic aortic valve degeneration
    Botezatu, Simona B.
    Tzolos, Evangelos
    Kaiser, Yannick
    Cartlidge, Timothy R. G.
    Kwiecinski, Jacek
    Barton, Anna K.
    Yu, Xinming
    Williams, Michelle C.
    van Beek, Edwin J. R.
    White, Audrey
    Kroon, Jeffrey
    Slomka, Piotr J.
    Popescu, Bogdan A.
    Newby, David E.
    Stroes, Erik S. G.
    Zheng, Kang H.
    Dweck, Marc R.
    EUROPEAN HEART JOURNAL-CARDIOVASCULAR IMAGING, 2023, 24 (06) : 759 - 767
  • [4] Role of lipoprotein(a) concentrations in bioprosthetic aortic valve degeneration
    Farina, Juan M.
    Chao, Chieh-Ju
    Pereyra, Milagros
    Roarke, Michael
    Said, Ebram F.
    Barry, Timothy
    Alsidawi, Said
    Sell-Dottin, Kristen
    Sweeney, John P.
    Fortuin, David F.
    Ayoub, Chadi
    Lester, Steven J.
    Oh, Jae K.
    Arsanjani, Reza
    Marcotte, Francois
    HEART, 2024, 110 (04) : 299 - 305
  • [5] Hypercholesterolemia is a Risk Factor for Aortic Bioprosthetic Valve Degeneration
    Mahjoub, Haifa
    Mathieu, Patrick
    Senechal, Mario
    Larose, Eric
    Dumesnil, Jean-Gaston
    Despres, Jean-Pierre
    Pibarot, Philippe
    CIRCULATION, 2011, 124 (21)
  • [6] Effect of statins on the progression of bioprosthetic aortic valve degeneration
    Antonini-Canterin, F
    Zuppiroli, A
    Popescu, BA
    Granata, G
    Cervesato, E
    Piazza, R
    Pavan, D
    Nicolosi, GL
    AMERICAN JOURNAL OF CARDIOLOGY, 2003, 92 (12): : 1479 - 1482
  • [7] Transcaval Valve-in-Valve-in-Valve Aortic Valve Replacement for Bioprosthetic Valve Degeneration
    Watkins, A. Claire
    Devireddy, Chandan M.
    Al-Atassi, Talal
    Simone, Amy E.
    Forcillo, Jessica
    Thourani, Vinod H.
    INNOVATIONS-TECHNOLOGY AND TECHNIQUES IN CARDIOTHORACIC AND VASCULAR SURGERY, 2018, 13 (02) : 132 - 135
  • [8] A reappraisal of bioprosthetic aortic valve failure related to structural valve degeneration
    Le Tourneau, T.
    Cueff, C.
    Guerma, L.
    Guimbretiere, G.
    Piriou, N.
    Warin-Fresse, K.
    Capoulade, R.
    Serfaty, J. M.
    Veziers, J.
    Senage, T.
    Roussel, J. C.
    EUROPEAN HEART JOURNAL, 2019, 40 : 2297 - 2297
  • [9] Native Aortic Valve Disease Progression and Bioprosthetic Valve Degeneration in Patients With Transcatheter Aortic Valve Implantation
    Kwiecinski, Jacek
    Tzolos, Evangelos
    Cartlidge, Timothy R. G.
    Fletcher, Alexander
    Doris, Mhairi K.
    Bing, Rong
    Tarkin, Jason M.
    Seidman, Michael A.
    Gulsin, Gaurav S.
    Cruden, Nicholas L.
    Barton, Anna K.
    Uren, Neal G.
    Williams, Michelle C.
    van Beek, Edwin J. R.
    Leipsic, Jonathon
    Dey, Damini
    Makkar, Raj R.
    Slomka, Piotr J.
    Rudd, James H. F.
    Newby, David E.
    Sellers, Stephanie L.
    Berman, Daniel S.
    Dweck, Marc R.
    CIRCULATION, 2021, 144 (17) : 1396 - 1408
  • [10] Impact of myocardial infarction on aortic and mitral bioprosthetic valve degeneration
    Rouabhia, Dounia
    Desroches, Florence
    Paquin, Amelie
    Mohammadi, Siamak
    Clavel, Marie-Annick
    Pibarot, Philippe
    Beaudoin, Jonathan
    CIRCULATION, 2024, 150