Automatic Segmentation of Vertebrae in Ultrasound Images

被引:1
|
作者
Berton, Florian [1 ]
Azzabi, Wassim [2 ]
Cheriet, Farida [1 ]
Laporte, Catherine [2 ]
机构
[1] Ecole Polytech, Montreal, PQ H3T 1J4, Canada
[2] Ecole Technol Super, Montreal, PQ H3C 1K3, Canada
关键词
Segmentation; Vertebrae; Ultrasound; Acoustic shadow; Random forests; IDENTIFICATION;
D O I
10.1007/978-3-319-20801-5_37
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents an automatic method for the segmentation of vertebrae in ultrasound images. Its goal is to determine whether each pixel belongs to the bone surface, its acoustic shadow or other tissues. The method is based on the extraction of several image features described in the literature and which we adapted to our problem, and on a random forest classifier. Morphological operations and vertebra-specific constraints are then used in a regularisation step in order to obtain homogeneous regions of both the surface and the acoustic shadow of the vertebra. Experiments on a test database of 9 images show promising results, with average recognition rates for the bone surface and acoustic shadow of 81.87 %, and 91.01 %, respectively.
引用
收藏
页码:344 / 351
页数:8
相关论文
共 50 条
  • [41] A Multiscale Attentional Unet Model for Automatic Segmentation in Medical Ultrasound Images
    Wang, Rui
    Zhou, Haoyuan
    Fu, Peng
    Shen, Hui
    Bai, Yang
    ULTRASONIC IMAGING, 2023, 45 (04) : 159 - 174
  • [42] AUTOMATIC SEGMENTATION OF COMMON CAROTID ARTERY IN TRANSVERSE MODE ULTRASOUND IMAGES
    Kumar, J. R. Harish
    Seelamantula, Chandra Sekhar
    Narayan, Nikhil S.
    Marziliano, Pina
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 389 - 393
  • [43] AUTOMATIC SEGMENTATION OF LUMEN INTIMA LAYER IN TRANSVERSE MODE ULTRASOUND IMAGES
    Kumar, J. R. Harish
    Seelamantula, Chandra Sekhar
    Andrade, Jasbon
    Rajagopal, K. V.
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 3493 - 3497
  • [44] Automatic segmentation of intravascular ultrasound images: A texture-based approach
    Aleksandra Mojsilović
    Miodrag Popović
    Nenad Amodaj
    Rade Babić
    Miodrag Ostojić
    Annals of Biomedical Engineering, 1997, 25 (6) : 1059 - 1071
  • [45] Deep Learning for Automatic Segmentation of Hybrid Optoacoustic Ultrasound (OPUS) Images
    Lafci, Berkan
    Mercep, Elena
    Morscher, Stefan
    Dean-Ben, Xose Luis
    Razansky, Daniel
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2021, 68 (03) : 688 - 696
  • [46] Random Walk Based Method for Automatic Segmentation of Intravascular Ultrasound Images
    严加勇
    崔崤峣
    黄永锋
    Journal of Donghua University(English Edition), 2015, 32 (05) : 770 - 776
  • [47] 2D PCA for Automatic Segmentation of the Prostate in Ultrasound Images
    Cosio, F. Arambula
    Fanti, Zian
    Robles, F. Torres
    16TH INTERNATIONAL SYMPOSIUM ON MEDICAL INFORMATION PROCESSING AND ANALYSIS, 2020, 11583
  • [48] An Enhanced Method for Automatic Detection and Segmentation of Carotid Artery in Ultrasound Images
    Licev, Lacezar
    Feberova, Karolina
    Tomecek, Jan
    Hendrych, Jakub
    COMPUTER SYSTEMS AND TECHNOLOGIES, COMPSYSTECH'16, 2016, : 206 - 213
  • [49] Cascaded Fully Convolutional DenseNet for Automatic Kidney Segmentation in Ultrasound Images
    Wu, Zhiwei
    Hai, Jinjin
    Zhang, Lijie
    Chen, Jian
    Cheng, Genyang
    Yan, Bin
    2019 2ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND BIG DATA (ICAIBD 2019), 2019, : 384 - 388
  • [50] Automatic detection and segmentation of lumbar vertebrae from X-ray images for compression fracture evaluation
    Kim, Kang Cheol
    Cho, Hyun Cheol
    Jang, Tae Jun
    Choi, Jong Mun
    Seo, Jin Keun
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2021, 200