Automatic Segmentation of Vertebrae in Ultrasound Images

被引:1
|
作者
Berton, Florian [1 ]
Azzabi, Wassim [2 ]
Cheriet, Farida [1 ]
Laporte, Catherine [2 ]
机构
[1] Ecole Polytech, Montreal, PQ H3T 1J4, Canada
[2] Ecole Technol Super, Montreal, PQ H3C 1K3, Canada
关键词
Segmentation; Vertebrae; Ultrasound; Acoustic shadow; Random forests; IDENTIFICATION;
D O I
10.1007/978-3-319-20801-5_37
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents an automatic method for the segmentation of vertebrae in ultrasound images. Its goal is to determine whether each pixel belongs to the bone surface, its acoustic shadow or other tissues. The method is based on the extraction of several image features described in the literature and which we adapted to our problem, and on a random forest classifier. Morphological operations and vertebra-specific constraints are then used in a regularisation step in order to obtain homogeneous regions of both the surface and the acoustic shadow of the vertebra. Experiments on a test database of 9 images show promising results, with average recognition rates for the bone surface and acoustic shadow of 81.87 %, and 91.01 %, respectively.
引用
收藏
页码:344 / 351
页数:8
相关论文
共 50 条
  • [31] Automatic Segmentation of Intravascular Ultrasound Images based on Temporal Texture Analysis
    Chen, Chi Hau
    Gangidi, Adithya G.
    2014 COMPUTING IN CARDIOLOGY CONFERENCE (CINC), VOL 41, 2014, 41 : 957 - 960
  • [32] Automatic superpixel-based segmentation method for breast ultrasound images
    Daoud, Mohammad I.
    Atallah, Ayman A.
    Awwad, Falah
    Al-Najjar, Mahasen
    Alazrai, Rami
    EXPERT SYSTEMS WITH APPLICATIONS, 2019, 121 (78-96) : 78 - 96
  • [33] Automatic segmentation of intravascular ultrasound images: A texture-based approach
    Aleksandra Mojsilović
    Miodrag Popović
    Nenad Amodaj
    Rade Babić
    Miodrag Ostojić
    Annals of Biomedical Engineering, 1997, 25 : 1059 - 1071
  • [34] Random walk based method for automatic segmentation of intravascular ultrasound images
    Yan, Jia-Yong
    Cui, Yao-Yao
    Huang, Yong-Feng
    Journal of Donghua University (English Edition), 2015, 32 (05) : 770 - 776
  • [35] Automatic 3D lesion segmentation on breast ultrasound images
    Kuo, Hsien-Chi
    Giger, Maryellen L.
    Reiser, Ingrid
    Drukker, Karen
    Edwards, Alexandra
    Sennett, Charlene A.
    MEDICAL IMAGING 2013: COMPUTER-AIDED DIAGNOSIS, 2013, 8670
  • [36] Fully automatic tumor segmentation of breast ultrasound images with deep learning
    Zhang, Shuai
    Liao, Mei
    Wang, Jing
    Zhu, Yongyi
    Zhang, Yanling
    Zhang, Jian
    Zheng, Rongqin
    Lv, Linyang
    Zhu, Dejiang
    Chen, Hao
    Wang, Wei
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2023, 24 (01):
  • [37] Validation of an automatic segmentation method to detect vertebral interfaces in ultrasound images
    Aventaggiato, Matteo
    Conversano, Francesco
    Pisani, Paola
    Casciaro, Ernesto
    Franchini, Roberto
    Lay-Ekuakille, Aime
    Muratore, Maurizio
    Casciaro, Sergio
    IET SCIENCE MEASUREMENT & TECHNOLOGY, 2016, 10 (01) : 18 - 27
  • [38] Automatic segmentation of intravascular ultrasound images: A texture-based approach
    Mojsilovic, A
    Popovic, M
    Amodaj, N
    Babic, R
    Ostojic, M
    ANNALS OF BIOMEDICAL ENGINEERING, 1997, 25 (06) : 1059 - 1071
  • [39] AUTOMATIC SEGMENTATION OF LUMEN INTIMA LAYER IN LONGITUDINAL MODE ULTRASOUND IMAGES
    Dhupia, Abhijeet
    Kumar, J. R. Harish
    Andrade, Jasbon
    Rajagopal, K., V
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 2125 - 2128
  • [40] A complete automatic region growing method for segmentation of masses on ultrasound images
    Poonguzhali, S.
    Ravindran, G.
    2006 INTERNATIONAL CONFERENCE ON BIOMEDICAL AND PHARMACEUTICAL ENGINEERING, VOLS 1 AND 2, 2006, : 88 - +