Steiner systems and configurations of points

被引:4
|
作者
Ballico, Edoardo [1 ]
Favacchio, Giuseppe [2 ]
Guardo, Elena [2 ]
Milazzo, Lorenzo [2 ]
机构
[1] Dipartimento Matemat, Via Sommar 14, I-38123 Povo, TN, Italy
[2] Dipartimento Matemat & Informat, Viale A Doria 6, I-95100 Catania, Italy
关键词
Steiner systems; Monomial ideals; Symbolic powers; Stanley Reisner rings; Linear codes; UPPER CHROMATIC NUMBER; COHEN-MACAULAYNESS; QUADRUPLE SYSTEMS; STRICT COLORINGS; MINIMUM DISTANCE; TRIPLE; IDEALS; CODES; POWERS; SETS;
D O I
10.1007/s10623-020-00815-x
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The aim of this paper is to make a connection between design theory and algebraic geometry/commutative algebra. In particular, given any Steiner System S(t, n, v) we associate two ideals, in a suitable polynomial ring, defining a Steiner configuration of points and its Complement. We focus on the latter, studying its homological invariants, such as Hilbert Function and Betti numbers. We also study symbolic and regular powers associated to the ideal defining a Complement of a Steiner configuration of points, finding its Waldschmidt constant, regularity, bounds on its resurgence and asymptotic resurgence. We also compute the parameters of linear codes associated to any Steiner configuration of points and its Complement.
引用
下载
收藏
页码:199 / 219
页数:21
相关论文
共 50 条
  • [21] Once more about 80 Steiner triple systems on 15 points
    Deza, M
    Grishukhin, V
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1998, 72 (1-2) : 165 - 184
  • [22] Different configurations of 25-order structure of Steiner triple systems of counting
    Tian, Wei
    Li, Xiaoyi
    Chou, Wanxi
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON APPLIED SCIENCE AND ENGINEERING INNOVATION, 2015, 12 : 271 - 274
  • [23] Cyclic bi-embeddings of Steiner triple systems on 31 points
    Bennett, GK
    Grannell, MJ
    Griggs, TS
    GLASGOW MATHEMATICAL JOURNAL, 2001, 43 : 145 - 151
  • [24] The Euclidean bottleneck Steiner tree and Steiner tree with minimum number of Steiner points
    Du, DZ
    Wang, LS
    Xu, BA
    COMPUTING AND COMBINATORICS, 2001, 2108 : 509 - 518
  • [25] Configurations of points
    Atiyah, M
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 359 (1784): : 1375 - 1387
  • [26] THE STEINER MINIMAL NETWORK FOR CONVEX CONFIGURATIONS
    THOMAS, DA
    RUBINSTEIN, JH
    COLE, T
    DISCRETE & COMPUTATIONAL GEOMETRY, 1993, 9 (03) : 323 - 333
  • [27] Defuzzification using Steiner points
    Vetterlein, T
    Navara, M
    FUZZY SETS AND SYSTEMS, 2006, 157 (11) : 1455 - 1462
  • [28] Clustering based on Steiner points
    Jiuzhen Liang
    Wei Song
    International Journal of Machine Learning and Cybernetics, 2012, 3 : 141 - 148
  • [29] Hamiltonian tetrahedralizations with Steiner points
    Escalona F.
    Fabila-Monroy R.
    Urrutia J.
    Boletín de la Sociedad Matemática Mexicana, 2017, 23 (2) : 537 - 547
  • [30] Steiner Configurations Ideals: Containment and Colouring
    Ballico, Edoardo
    Favacchio, Giuseppe
    Guardo, Elena
    Milazzo, Lorenzo
    Thomas, Abu Chackalamannil
    MATHEMATICS, 2021, 9 (03) : 1 - 15