A NOVEL SPATIALLY CONSTRAINED MIXTURE MODEL FOR IMAGE SEGMENTATION

被引:0
|
作者
Xiao, Zhiyong [1 ]
Yuan, Yunhao [1 ]
Yang, Jinlong [1 ]
Ge, Hongwei [1 ]
机构
[1] Jiangnan Univ, Sch Internet Things Engn, Wuxi 214122, Peoples R China
关键词
Mixture model; spatial constraint; energy function; gradient descent algorithm; image segmentation;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a novel spatially constrained mixture model for image segmentation. This model assumes that the prior distribution for each pixel depends on its neighboring pixels', and the degree of dependency is decided by the geometric closeness. The negative log-likelihood function of the proposed method is viewed as energy function, and the parameters of the energy function are estimated by gradient descent algorithm. Evaluation of the developed method is done on synthetic and real world images. Experimental results are compared with those obtained using mixture model-based methods. The proposed approach performs better than other ones in terms of classification accuracy.
引用
收藏
页码:119 / 123
页数:5
相关论文
共 50 条
  • [41] Image segmentation based on adaptive mixture model
    Wang, Xianghai
    Fang, Lingling
    Li, Ming
    JOURNAL OF OPTICS, 2013, 15 (03)
  • [42] MRF Model Based Unsupervised Color Textured Image Segmentation Using Multidimensional Spatially Variant Finite Mixture Model
    Islam, Mofakharul
    Vamplew, Peter
    Yearwood, John
    TECHNOLOGICAL DEVELOPMENTS IN EDUCATION AND AUTOMATION, 2010, : 375 - 380
  • [43] Image Restoration Using Gaussian Mixture Models With Spatially Constrained Patch Clustering
    Niknejad, Milad
    Rabbani, Hossein
    Babaie-Zadeh, Massoud
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (11) : 3624 - 3636
  • [44] IMAGE INTERPOLATION USING GAUSSIAN MIXTURE MODELS WITH SPATIALLY CONSTRAINED PATCH CLUSTERING
    Niknejad, Milad
    Rabbani, Hossein
    Babaie-Zadeh, Massoud
    Jutten, Christian
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 1613 - 1617
  • [45] Non-local spatially varying finite mixture models for image segmentation
    Juan-Albarracin, Javier
    Fuster-Garcia, Elies
    Juan, Alfons
    Garcia-Gomez, Juan M.
    STATISTICS AND COMPUTING, 2021, 31 (01)
  • [46] Non-local spatially varying finite mixture models for image segmentation
    Javier Juan-Albarracín
    Elies Fuster-Garcia
    Alfons Juan
    Juan M. García-Gómez
    Statistics and Computing, 2021, 31
  • [47] Spatially constrained segmentation of dermoscopy images
    Zhou, Howard
    Chen, Mei
    Zou, Le
    Gass, Richard
    Ferris, Laura
    Drogowski, Laura
    Rehg, James M.
    2008 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1-4, 2008, : 800 - +
  • [48] Remote Sensing Image Segmentation Based on a Novel Gaussian Mixture Model and SURF Algorithm
    Yin, Shoulin
    Wang, Liguo
    Wang, Qunming
    Yang, Jinghui
    Jiang, Man
    INTERNATIONAL JOURNAL OF SWARM INTELLIGENCE RESEARCH, 2023, 14 (02)
  • [49] Spatially regularized mixture model for lesion segmentation with application to stroke patients
    Ozenne, Brice
    Subtil, Fabien
    Ostergaard, Leif
    Maucort-Boulch, Delphine
    BIOSTATISTICS, 2015, 16 (03) : 580 - 595
  • [50] Bayesian Spatially Constrained Fernandez-Steel Skew Normal Mixture Model for MRI-Based Brain Tumor Segmentation
    Pravitasari, Anindya Apriliyanti
    Nirmalasari, Nur Indah
    Iriawan, Nur
    Irhamah
    Fithriasari, Kartika
    Purnami, Santi Wulan
    Ferriastuti, Widiana
    2ND INTERNATIONAL CONFERENCE ON SCIENCE, MATHEMATICS, ENVIRONMENT, AND EDUCATION, 2019, 2019, 2194