Image Restoration Using Gaussian Mixture Models With Spatially Constrained Patch Clustering

被引:76
|
作者
Niknejad, Milad [1 ]
Rabbani, Hossein [2 ]
Babaie-Zadeh, Massoud [3 ]
机构
[1] Islamic Azad Univ, Majlesi Branch, Esfahan 8631656451, Iran
[2] Isfahan Univ Med Sci, Med Image & Signal Proc Res Ctr, Dept Biomed Engn, Esfahan 8174755153, Iran
[3] Sharif Univ Technol, Dept Elect Engn, Tehran 1136511155, Iran
关键词
Image restoration; Gaussian mixture models; neighborhood clustering; linear image restoration; SPARSE; REPRESENTATIONS; RECOVERY;
D O I
10.1109/TIP.2015.2447836
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we address the problem of recovering degraded images using multivariate Gaussian mixture model (GMM) as a prior. The GMM framework in our method for image restoration is based on the assumption that the accumulation of similar patches in a neighborhood are derived from a multivariate Gaussian probability distribution with a specific covariance and mean. Previous methods of image restoration with GMM have not considered spatial (geometric) distance between patches in clustering. Our conducted experiments show that in the case of constraining Gaussian estimates into a finite-sized windows, the patch clusters are more likely to be derived from the estimated multivariate Gaussian distributions, i.e., the proposed statistical patch-based model provides a better goodness-of-fit to statistical properties of natural images. A novel approach for computing aggregation weights for image reconstruction from recovered patches is introduced which is based on similarity degree of each patch to the estimated Gaussian clusters. The results admit that in the case of image denoising, our method is highly comparable with the state-of-the-art methods, and our image interpolation method outperforms previous state-of-the-art methods.
引用
收藏
页码:3624 / 3636
页数:13
相关论文
共 50 条
  • [1] IMAGE INTERPOLATION USING GAUSSIAN MIXTURE MODELS WITH SPATIALLY CONSTRAINED PATCH CLUSTERING
    Niknejad, Milad
    Rabbani, Hossein
    Babaie-Zadeh, Massoud
    Jutten, Christian
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 1613 - 1617
  • [2] Image Restoration Based on Improved Patch Clustering in Gaussian Mixture Models
    Qiu, Guoqing
    Wei, Yating
    Yang, Haijing
    Wang, Yantao
    Luo, Pan
    [J]. 2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 4502 - 4505
  • [3] Image segmentation using spectral clustering of Gaussian mixture models
    Zeng, Shan
    Huang, Rui
    Kang, Zhen
    Sang, Nong
    [J]. NEUROCOMPUTING, 2014, 144 : 346 - 356
  • [4] A Spatially Constrained Asymmetric Gaussian Mixture Model for Image Segmentation
    Ji, Zexuan
    Liu, Jinyao
    Yuan, Hengdong
    Huang, Yubo
    Sun, Quansen
    [J]. IMAGE AND VIDEO TECHNOLOGY, PSIVT 2015, 2016, 9431 : 697 - 708
  • [5] A spatially constrained asymmetric Gaussian mixture model for image segmentation
    Chen, Yunjie
    Cheng, Ning
    Cai, Mao
    Cao, Chunzheng
    Yang, Jianwei
    Zhang, Zhichao
    [J]. INFORMATION SCIENCES, 2021, 575 : 41 - 65
  • [6] Fast and Robust Spatially Constrained Gaussian Mixture Model for Image Segmentation
    Thanh Minh Nguyen
    Wu, Q. M. Jonathan
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2013, 23 (04) : 621 - 635
  • [7] A spatially constrained generative asymmetric Gaussian mixture model for image segmentation
    Ji, Zexuan
    Huang, Yubo
    Sun, Quansen
    Cao, Guo
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2016, 40 : 611 - 626
  • [8] Spatially Constrained Non-Gaussian Mixture Model for Image Segmentation
    Singh, Jai Puneet
    Bouguila, Nizar
    [J]. 2017 IEEE 30TH CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (CCECE), 2017,
  • [9] Model-Based segmentation of image data using spatially constrained mixture models
    Hu, Can
    Fan, Wentao
    Du, Jixiang
    Zeng, Yuchen
    [J]. NEUROCOMPUTING, 2018, 283 : 214 - 227
  • [10] Image Fusion Using Gaussian Mixture Models
    Heaps, Katie
    Koslosky, Josh
    Sidle, Glenn
    Levine, Stacey
    [J]. PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2013, 2013,