Physically informed artificial neural networks for atomistic modeling of materials

被引:207
|
作者
Pun, G. P. Purja [1 ]
Batra, R. [2 ]
Ramprasad, R. [2 ]
Mishin, Y. [1 ]
机构
[1] George Mason Univ, Dept Phys & Astron, MSN 3F3, Fairfax, VA 22030 USA
[2] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
关键词
GENERALIZED GRADIENT APPROXIMATION; POTENTIAL-ENERGY SURFACES; EMBEDDED-ATOM METHOD; INTERATOMIC POTENTIALS; HYDROCARBONS; METALS; CHEMISTRY; SCIENCE;
D O I
10.1038/s41467-019-10343-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Large-scale atomistic computer simulations of materials heavily rely on interatomic potentials predicting the energy and Newtonian forces on atoms. Traditional interatomic potentials are based on physical intuition but contain few adjustable parameters and are usually not accurate. The emerging machine-learning (ML) potentials achieve highly accurate interpolation within a large DFT database but, being purely mathematical constructions, suffer from poor transferability to unknown structures. We propose a new approach that can drastically improve the transferability of ML potentials by informing them of the physical nature of interatomic bonding. This is achieved by combining a rather general physics-based model (analytical bond-order potential) with a neural-network regression. This approach, called the physically informed neural network (PINN) potential, is demonstrated by developing a general-purpose PINN potential for Al. We suggest that the development of physics-based ML potentials is the most effective way forward in the field of atomistic simulations.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Modeling relational responding with artificial neural networks
    Mendoza, Janelle
    Ghirlanda, Stefano
    BEHAVIOURAL PROCESSES, 2023, 205
  • [22] RELATIVE HUMIDITY MODELING WITH ARTIFICIAL NEURAL NETWORKS
    Kuzugudenli, E.
    APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2018, 16 (04): : 5227 - 5235
  • [23] Artificial neural networks for modeling chemosensory reception
    Malaka, Rainer
    Ragg, Thomas
    Artificial Neural Networks in Engineering - Proceedings (ANNIE'94), 1994, 4 : 573 - 578
  • [24] Modeling flexibility using artificial neural networks
    Förderer K.
    Ahrens M.
    Bao K.
    Mauser I.
    Schmeck H.
    Energy Informatics, 1 (Suppl 1) : 73 - 91
  • [25] Statistical Compact Modeling With Artificial Neural Networks
    Dai, Wu
    Li, Yu
    Rong, Zhao
    Peng, Baokang
    Zhang, Lining
    Wang, Runsheng
    Huang, Ru
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2023, 42 (12) : 5156 - 5160
  • [26] Modeling saltwater upcoming with artificial neural networks
    Coppola, Emery
    Szdarovsky, Ferenc
    McIane, Charles
    Pulton, Mary
    Magelky, Robin
    EFFECTIVE UTILIZATION OF AGRICULTURAL SOIL & WATER RESOURCES AND PROTECTION OF ENVIRONMENT, 2007, : 3 - 8
  • [27] Modeling of eucalyptus productivity with artificial neural networks
    Sampaio de Freitas, Eliane Cristina
    de Paiva, Haroldo Nogueira
    Lima Neves, Julio Cesar
    Marcatti, Gustavo Eduardo
    Leite, Helio Garcia
    INDUSTRIAL CROPS AND PRODUCTS, 2020, 146
  • [28] Modeling Axonal Plasticity in Artificial Neural Networks
    Ryland, James
    NEURAL PROCESSING LETTERS, 2021, 53 (02) : 1119 - 1146
  • [29] Modeling Axonal Plasticity in Artificial Neural Networks
    James Ryland
    Neural Processing Letters, 2021, 53 : 1119 - 1146
  • [30] A regression modeling method of the artificial neural networks
    Li, P
    Mu, XF
    ELECTRONIC IMAGING AND MULTIMEDIA SYSTEMS II, 1998, 3561 : 398 - 402