Collisional damping of the geodesic acoustic mode

被引:39
|
作者
Gao, Zhe [1 ]
机构
[1] Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China
关键词
ZONAL FLOWS; HELICAL SYSTEMS; DYNAMICS; PLASMA;
D O I
10.1063/1.4794339
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The frequency and damping rate of the geodesic acoustic mode (GAM) is revisited by using a gyrokinetic model with a number-conserving Krook collision operator. It is found that the damping rate of the GAM is non-monotonic as the collision rate increases. At low ion collision rate, the damping rate increases linearly with the collision rate; while as the ion collision rate is higher than v(ti)/R, where v(ti) and R are the ion thermal velocity and major radius, the damping rate decays with an increasing collision rate. At the same time, as the collision rate increases, the GAM frequency decreases from the (7/4 + tau)v(ti)/R to (1 + tau)v(ti)/R, where tau is the ratio of electron temperature to ion temperature. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4794339]
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Kinetic theory of island geodesic acoustic mode
    Choi, G. J.
    PHYSICS OF PLASMAS, 2024, 31 (04)
  • [32] Shaping effects on the geodesic acoustic mode in tokamaks
    Chen, Zhe
    Ren, Haijun
    NUCLEAR FUSION, 2023, 63 (06)
  • [33] Excitation of geodesic acoustic mode in toroidal plasmas
    Itoh, K
    Hallatschek, K
    Itoh, SI
    PLASMA PHYSICS AND CONTROLLED FUSION, 2005, 47 (03) : 451 - 458
  • [34] Effect of impurity ions on the geodesic acoustic mode
    Guo, Wenfeng
    Wang, Shaojie
    Li, Jiangang
    PHYSICS OF PLASMAS, 2010, 17 (11)
  • [35] Structure and scaling properties of the geodesic acoustic mode
    McKee, G. R.
    Gupta, D. K.
    Fonck, R. J.
    Schlossberg, D. J.
    Shafer, M. W.
    Gohil, P.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2006, 48 (04) : S123 - S136
  • [36] Scaling of the geodesic acoustic mode amplitude on JET
    Silva, C.
    Hillesheim, J. C.
    Gil, L.
    Hidalgo, C.
    Meneses, L.
    Rimini, F.
    Abduallev, S.
    Abhangi, M.
    Abreu, P.
    Afzal, M.
    Aggarwal, K. M.
    Ahlgren, T.
    Ahn, J. H.
    Aho-Mantila, L.
    Aiba, N.
    Airila, M.
    Albanese, R.
    Aldred, V.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    Alkseev, A.
    Allinson, M.
    Alper, B.
    Alves, E.
    Ambrosino, G.
    Ambrosino, R.
    Amicucci, L.
    Amosov, V.
    Sunden, E. Andersson
    Angelone, M.
    Anghel, M.
    Angioni, C.
    Appel, L.
    Appelbee, C.
    Arena, P.
    Ariola, M.
    Arnichand, H.
    Arshad, S.
    Ash, A.
    Ashikawa, N.
    Aslanyan, V.
    Asunta, O.
    Auriemma, F.
    Austin, Y.
    Avotina, L.
    Axton, M. D.
    Ayres, C.
    Bacharis, M.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2018, 60 (08)
  • [37] Nonlinear excitation of geodesic acoustic mode by collisionless trapped electron mode
    Qiu, Zhiyong
    Chen, Liu
    Zonca, Fulvio
    NUCLEAR FUSION, 2014, 54 (03)
  • [38] Electromagnetic effect on geodesic acoustic mode with adiabatic electrons
    Huang, Wenlong
    Ren, Haijun
    Xu, X. Q.
    PHYSICS OF PLASMAS, 2019, 26 (02)
  • [39] Effect of toroidal rotation on the geodesic acoustic mode in magnetohydrodynamics
    Ren, Haijun
    PHYSICS OF PLASMAS, 2012, 19 (09)
  • [40] Analytical study on magnetic component of geodesic acoustic mode
    Xie, Baoyi
    Ye, Lei
    Chen, Yang
    Zhao, Pengfei
    Guo, Wenfeng
    Xiang, Nong
    PHYSICA SCRIPTA, 2022, 97 (06)