Nonlinear excitation of geodesic acoustic mode by collisionless trapped electron mode

被引:9
|
作者
Qiu, Zhiyong [1 ]
Chen, Liu [1 ,2 ]
Zonca, Fulvio [1 ,3 ]
机构
[1] Zhejiang Univ, Inst Fus Theory & Simulat, Hangzhou 310003, Zhejiang, Peoples R China
[2] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA
[3] Assoc Euratom ENEA Fus, I-00044 Frascati, Italy
基金
美国国家科学基金会;
关键词
gyrokinetic theory; zonal structure; geodesic acoustic mode; collisionless trapped electron mode; DRIFT WAVES; ZONAL FLOW; TURBULENCE; TOKAMAKS; INSTABILITY; TRANSPORT; PLASMA; SIMULATIONS; EQUILIBRIA; DRIVEN;
D O I
10.1088/0029-5515/54/3/033010
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Excitation of geodesic acoustic mode (GAM) by collisionless trapped electron mode (CTEM) is studied within the framework of nonlinear gyrokinetic theory. The dispersion relation describing GAM excitation by drift wave turbulence valid for arbitrary k perpendicular to rho(i) is derived. Here, k perpendicular to and rho(i) are, respectively, perpendicular wave vector and thermal ion Larmor radius. It is found that the parametric decay process of CTEM into a GAM and a CTEM sideband is unstable in both small and large k perpendicular to rho(i) regimes due to, respectively, ion and trapped electron nonlinearity. For moderate k perpendicular to rho(i), however, there exists a negligible-GAM-excitation state where ion and trapped electron nonlinearities cancel each other.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] The effect of trapped electrons on the collisionless damping of the geodesic acoustic mode
    Zhang, Shuangxi
    Sun, Qizhi
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2014, 56 (10)
  • [2] Trapped electron damping of geodesic acoustic mode
    Zhang, H. S.
    Lin, Z.
    [J]. PHYSICS OF PLASMAS, 2010, 17 (07)
  • [3] Excitation of zonal flow by nonlinear geodesic acoustic mode
    Ren, Haijun
    Xu, X. Q.
    [J]. PHYSICS OF PLASMAS, 2020, 27 (03)
  • [4] Electron collisionless damping of the geodesic acoustic mode in rotating tokamak plasmas
    Xie, Baoyi
    Guo, Wenfeng
    Gong, Xueyu
    Yu, Jun
    Chen, You
    Cao, Jinjia
    [J]. NUCLEAR FUSION, 2016, 56 (12)
  • [5] Nonlinear stability and instability in collisionless trapped electron mode turbulence
    Baver, DA
    Terry, PW
    Gatto, R
    Fernandez, E
    [J]. PHYSICS OF PLASMAS, 2002, 9 (08) : 3318 - 3332
  • [6] The electron geodesic acoustic mode
    Chakrabarti, N.
    Guzdar, P. N.
    Kaw, P. K.
    [J]. PHYSICS OF PLASMAS, 2012, 19 (09)
  • [7] Damping of Geodesic Acoustic Mode by Trapped Electrons
    张双喜
    高喆
    武文韬
    仇志勇
    [J]. Plasma Science and Technology, 2014, 16 (07) : 650 - 656
  • [8] Damping of Geodesic Acoustic Mode by Trapped Electrons
    张双喜
    高喆
    武文韬
    仇志勇
    [J]. Plasma Science and Technology, 2014, (07) : 650 - 656
  • [9] Damping of Geodesic Acoustic Mode by Trapped Electrons
    Zhang Shuangxi
    Gao Zhe
    Wu Wentao
    Qiu Zhiyong
    [J]. PLASMA SCIENCE & TECHNOLOGY, 2014, 16 (07) : 650 - 656
  • [10] Multiple eigenmodes of geodesic acoustic mode in collisionless plasmas
    Gao, Zhe
    Itoh, K.
    Sanuki, H.
    Dong, J. Q.
    [J]. PHYSICS OF PLASMAS, 2006, 13 (10)